See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2831386
Testing Monadic Code with QuickCheck

Article in ACM SIGPLAN Notices - June 2002

DOI: 10.1145/636517.636527 - Source: CiteSeer

CITATIONS READS
69 838

2 authors, including:

) John Hughes
Chalmers University of Technology

152 PUBLICATIONS 7,690 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject PROWESS View project

All content following this page was uploaded by John Hughes on 28 December 2013.

The user has requested enhancement of the downloaded file.

ResearchGate

https://www.researchgate.net/publication/2831386_Testing_Monadic_Code_with_QuickCheck?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2831386_Testing_Monadic_Code_with_QuickCheck?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/PROWESS?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Hughes-22?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Hughes-22?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chalmers-University-of-Technology?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Hughes-22?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Hughes-22?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Testing Monadic Code with QuickCheck

Koen Claessen and John Hughes
Department of Computer Science
Chalmers University of Technology

{koen,rjmh}@cs.chalmers.se

ABSTRACT

QuickCheck is a previously published random testing tool
for Haskell programs. In this paper we show how to use it
for testing monadic code, and in particular imperative code
written using the ST monad. QuickCheck tests a program
against a specification: we show that QuickCheck’s specifi-
cation language is sufficiently powerful to represent common
forms of specifications: algebraic, model-based (both func-
tional and relational), and pre-/post-conditional. Moreover,
all these forms of specification can be used directly for test-
ing. We define a new language of monadic properties, and
make a link between program testing and the notion of ob-
servational equivalence.

1. INTRODUCTION

QuickCheck [4] is an automated testing tool for Haskell
programs. It defines a formal specification language which
programmers can use to specify the code under test, and
then checks that the stated properties hold in a large number
of randomly generated test cases. Specifications are thus
used directly, both for test case generation and as a test
oracle. The benefits of using QuickCheck are documented and
repeatable testing, and production of a specification which
has been machine-checked for consistency with the program.
While there is no guarantee that the specified properties
hold in general, we and others have found this approach to
be highly effective at revealing errors quickly [21, 17].

In our first QuickCheck paper, we focussed on testing pure
functions, which are easier to test than side-effecting ones
since one need not take a potentially large and complex state
into account. Haskell programs consist to a large extent of
pure functions, and so this focus was not a major restric-
tion. Yet even in Haskell, imperative data-structures and
algorithms are sometimes important for achieving good per-
formance; hence the popularity of monads [22], and Peyton-
Jones’ claim that Haskell is “the world’s finest imperative
programming language” [14]. Thus, in this paper, we shall
show how QuickCheck can be used to test monadic Haskell

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage @at copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

code, and especially imperative code using the ST monad
[15].

The key problem is constructing specifications of monadic
code that can be used directly for testing. Although this
is not as straightforward as for pure functions, we shall
show that by borrowing concepts from programming lan-
guage theory, we can construct testable specifications based
on algebraic laws, abstract models, or pre- and postcon-
ditions. We introduce a new monadic property language,
which simplifies these specifications considerably. Our main
examples are an imperative implementation of queues, and
the Union/Find algorithm.

The structure of the paper is as follows. In the next sec-
tion, we introduce QuickCheck as previously described. In
section 3 we introduce the queue example. Section 4 presents
an algebraic specification of imperative queues, and shows
how it can be used for testing, introducing the key idea of
testing observational equivalence. The next section repeats
the exercise for a model-based specification instead. Sec-
tion 6 draws lessons from the queue example, in particular
the desirability of extending QuickCheck with a language of
monadic properties. The next three sections introduce this
language, present a formal semantics, and sketch its imple-
mentation. We illustrate the monadic property language by
testing the Union/Find algorithm in the next three sections,
which introduce the algorithm, test it using pre- and post-
conditions, and using a relational model-based specification
respectively. Specifications can become quite bulky; section
13 illustrates an approach to simplifying them, by defining
even higher-level combinators for model-based specification
of imperative ADTs, which make such specifications very
concise. Finally, section 14 discusses related work, and sec-
tion 15 concludes.

2. BACKGROUND: AN OVERVIEW OF
QUICKCHECK

QuickCheck is used by adding property definitions to the
program code, either together with the code under test, or
in separate “specification” modules. Properties are simply
Haskell definitions, such as the following:

prop_PlusAssoc :: Int — Int — Int — Bool
prop_PlusAssoczyz = (z+y)+2z =1+ (y + 2)

Properties are implicitly universally quantified over their ar-
guments, so this property states the associativity of integer
addition.

Properties are tested by passing them to the function
quickCheck. For example, using the Hugs interpreter we

would test the property above by

Main> quickCheck prop_PlusAssoc
OK, passed 100 tests.

This tests the property in one hundred randomly gener-
ated cases. The function quickCheck is overloaded, to ac-
cept properties with any number of arguments, and we also
provide a small script which invokes quickCheck on every
property in a module (property names begin with “prop_”
just so that this script can find them).

The QuickCheck property language also provides condi-
tional properties. For example,

prop_InsertOrdered : Int — [Int] — Property
prop_InsertOrdered © ts = ordered s —>
ordered (insert z s)

states that inserting an element into an ordered list produces
an ordered list. Testing such a property discards test cases
which do not satisfy the precondition, to guarantee that we
test the conclusion with 100 ordered lists. Notice that the re-
sult type is different in this case: = isn’t a simple boolean
operator since it affects the selection of test cases. All such
operators in QuickCheck have the result type Property.

Alternatively, rather than quantify over all lists and then
select the ordered ones, we can quantify explicitly over or-
dered ones:

prop_InsertOrdered :: Int — Property
prop_InsertOrdered x = forAll orderedLists $ X\ zs —
ordered (insert T Ts)

This makes for more efficient testing and, often, better test
coverage.

The first argument of forAll above, orderedLists, is a test
data generator. We can think of it as representing a set that
we quantify over, or, more precisely, a probability distribu-
tion over such a set. QuickCheck also provides a test data
generation language for defining such sets. Test data gener-
ators have types of the form Gen 7, where Gen is a monad,
which enables us to use Haskell’s monadic syntactic sugar
and rich library of monadic operators in test data generator
definitions. In addition, there are combinators for making
choices between alternatives, such as

oneof :: [Gena] —» Gena

which chooses between alternatives with equal probability,
or

frequency :: [(Int, Gen a)] — Gen «

which attaches a weight to each alternative.
We can define a default test data generator for each type
as an instance of the class Arbitrary:

class Arbitrary «
where
arbitrary :: Gen «

QuickCheck provides instances of this class for all of Haskell’s
standard types. These default generators are used to con-
struct top-level property arguments, or of course if the pro-
grammer writes forAll arbitrary explicitly.

QuickCheck provides several functions for making observa-
tions of test data, of which the most important is collect. For
example, we could observe the lengths of lists in prop_Insert-
Ordered by redefining it as

prop_InsertOrdered z ts = ordered s —>
collect (length zs) $ ordered (insert z xs)

which causes a table showing the distribution of length zs in
the actual test data to be displayed when testing is complete.
The programmer can then decide whether the test coverage
was adequate, or not.

Apart from the small script for extracting and testing
properties from modules, QuickCheck is defined entirely as a
collection of combinators — it is a domain specific embedded
language [13]. To use it, the programmer need only import
module QuickCheck which is itself only 300 lines of code!
Its lightweight nature makes QuickCheck easy to modify and
experiment with.

3. A SIMPLE EXAMPLE: QUEUES

We shall take as an example one of the simplest imperative
abstract datatypes, a queue. We assume we are given a
module implementing queues, with the signature

data Queue s a = ...

empty 2 ST s (Queue s a)

add m Queuesa — a — ST s ()
remove i Queue sa — ST s ()

front it Queue s a — ST s (Maybe a)

whose operations create an empty queue, add an element,
remove an element, and return the front element without
removing it, if there is one. Queues are implemented in the
standard imperative way, so the queue operations have types
in the ST monad, and the Queue type is parameterised on
the state thread it belongs to. We omit the details of the
implementation.

Of course, there are efficient ways to implement queues
purely functionally also [3], but this is not the point: queues
serve here simply as an example of an abstract datatype with
an imperative implementation. In the following sections we
shall see how we can specify their behaviour.

4. TESTING AN ALGEBRAIC SPECIFICA-
TION OF QUEUES

One well established way to specify an abstract datatype
is via an algebraic specification, in which we characterise the
behaviour of our operations by giving equations between
terms. For example, if we were specifying Haskell’s lists,
then one such equation might be

zs +H (ys H zs) = (zs H ys) + zs

In this case, since our operations are monadic, we will give
equations between fragments of monadic code, that is, pro-
gram fragments which might appear as part of a do block.
Our specification of queues is given below.

q < empty q < empty (1)
z ¢ front q z < return Nothing
q < empty q < empty
add g m add g m (2)
T < front g z < return (Just m)
add g m add g m
add q n T < front q 3)
T < front q add q n
q < empty
add ¢ m q < empty (4)
remove ¢
add ¢ m add g m
add q n remove ¢ (5)
remove q add q n

Are these equations a complete specification? Do they de-
fine the behaviour of every sequence of queue operations? To
see that they do, we shall argue that every such sequence
can be put into a normal form consisting of queue creation,
followed by any number of add operations, followed by bind-
ings of variables to values (via z < return v). Consider any
such sequence, and consider the first use of front or remove,
if one exists. If this first use is of front, then equations (1)
to (3) allow us to remove it, by moving it earlier until it can
be replaced by a return. Bindings using return can then
be moved to the end of the sequence of queue operations
using the monad laws, and so do not interfere with further
application of these equations. If the first use is of remove,
then equations (4) and (5) enable us to remove it by moving
it earlier until it encounters the matching add provided
there are at least as many adds as removes. Indeed, a se-
quence of queue operations is only well-formed if every prefix
contains at least as many add operations as remowves.

But what do we mean by equality in these equations? We
certainly do not mean that the two sides generate the same
state when they are run! In particular, the left hand side
of equation (4) creates and discards an internal cell in the
queue, while the right hand side does not: clearly pointer
values and memory contents will differ after the two se-
quences are executed. Yet the difference is in low-level rep-
resentations, and cannot be observed by the Haskell pro-
grammer.

We therefore focus on the observable behaviour of our
code. Fortunately, operational semanticists have already de-
fined a program equivalence based on observations!

Definition A contert C is a “program with a
hole”. We write the result of “filling the hole”
with a term e as Cfe].

Definition We write p |} o when program p
computes an observable result o.

Definition Two terms e and e’ are operationally
equivalent if, for every context C, then Cle] | o
if and only if Cle] | o.

In our case, two program fragments are equivalent if, when
they are inserted into any Haskell program, the program
output is the same. Yet quantifying over all Haskell pro-
grams with holes is impractical, because Haskell is so com-
plex. So instead, we shall restrict our attention to “queue

programs”, which contain only queue operations on a single
queue of integers, and moreover are well-formed in the sense
discussed above. We shall restrict our observations to the
values bound to variables in uses of front. Thus we con-
sider two queue-program fragments equivalent if, when they
are inserted into any queue program (in a well-formed way),
then the results delivered by all the calls of front are the
same.

In restricting contexts and observations like this, we are
making a number of reasonable assumptions. Since Queue
is an abstract datatype, other operations in the ST monad
should not interfere with queue operations i.e. they
should commute, since the Queue representations are hid-
den. We are also assuming that operations on different
queues commute, since there is no sharing between their rep-
resentations. Given these assumptions, we can ignore other
monadic operations and operations on other queues when
we reason about the queue of interest. Since the Queue op-
erations are polymorphic, we can appeal to parametricity
to argue that if the equations are satisfied for Queues of
integers, they are satisfied at every type. It is also reason-
able to restrict our observations to the results from front,
again since Queue is an abstract data type, and there is no
other operator which delivers any other type of value from
it. Thus, if two program fragments are operationally equiva-
lent when we restrict our attention to queue programs, then
they should be equivalent in Haskell also.

Now we just program operational equivalence using Quick-
Check. We must define queue programs: they consist of
queue creation followed by a sequence of Actions.

data Action = Add Int | Remove |
Front | Return (Maybe Int)
deriving (Eq, Show)

We will not need to represent variable names in this exam-
ple: we just assume that each Front and Return binds a
variable, and we shall observe the sequence of values bound.
We define the semantics of action sequences via the function
perform.

perform i

Queue a Int — [Action] — ST a [Maybe Int]
perform q | = return [|
perform q (a : as) =

case a of

Addn —add n q > perform q as

Remove —remove q >> perform q as

Front —liftM2 (:) (front q) (perform q as)
Return & —liftM (z :) (perform q as)

‘We shall need to quantify over actions, or more specifically
over well-formed action sequences. We must therefore define
a test-data generator for these. We define actions n as the
set of action sequences which are well-formed after n add
operations, that is, for queues already containing n elements.
A Remowe is only possible if the queue is non-empty.

actions :: Num a = a — Gen [Action)]
actions n =

oneof ([return [],
LiftM2 (:) (liftM Add arbitrary)
(actions (n + 1)),
liftM (Front :) (actions n)] +
if n == 0 then
[
else

[liftM (Remove :) (actions (n — 1))])
We also define a function
delta :: [Action] — Int

to compute the change in the number of queue elements
wrought by a sequence of Actions.

Now for the definition of operational equivalence, which
follows the formal definition exactly: we choose an arbitary
context consisting of a prefix and suffix of queue actions,
taking care that the complete program is well-formed, and
then check that the observations we make are the same in
each case.

(2) i: [Action] — [Action] — Property
c 2 =

fj)?"/ill (actions 0) $ X pref —
forAll (actions (delta (pref H ¢))) $ X suff —

let
observe r =
runST (do
q + empty
perform q (pref H = +H suff))
in
observe ¢ = observe ¢’

Equations (3) and (5) in the specification can now be written
directly as QuickCheck properties.

prop_FrontAdd mn =
[Add m, Add n, Front] = [Add m, Front, Add n]
prop_AddRemove mn =

[Add m, Add n, Remove] = [Add m, Remove, Add n]

The other three equations relate fragments that begin by
creating an empty queue, and can thus only appear at the
start of a queue program. We therefore need a slightly dif-
ferent notion of operational equivalence.

!
c 2N ¢ =

forAll (actions (delta ¢)) § X suff —
let
observe t =
runST (do

q + empty
perform q (z +H suff))

in

observe ¢ = observe ¢’

The remaining equations are now easily stated.

prop_FrontEmpty =

[Front] =" [Return Nothing]
prop_FrontAddEmpty m =

[Add m, Front] =" [Add m, Return (Just m)]
prop_AddRemoveEmpty m =

[Add m, Remove] = [|

The properties can now be checked by QuickCheck. As ex-
pected, they all succeed.

5. TESTING A MODEL-BASED SPECIFI-
CATION OF QUEUES

In the previous section, we implemented an algebraic spec-
ification of queues as QuickCheck properties. But specifica-
tions come in other flavours too. In this section, we imple-
ment a specification based on an abstract model of queues.
The popular Z specification language, for example, is based
on such models [11].

We shall model the state of a queue as a list of the stored
elements. With this model, the queue operations are very
easy to define. We give them names subscripted by S, since
they will serve as specifications. Note that each (except
empty) returns both a “result” and a new queue.

emptys =]

adds a q =((), ¢ + [a])
removes (-: q) = ((), ¢)

fronts [] = (Nothing, [])
fronts (a : q) = (Just a, a: q)

Now, to formulate the correctness of the implementation,
we must relate the implementation state to the abstract
model. A standard way to do so is to define an abstrac-
tion function, which maps the implementation state to the
abstract value that it represents. Our abstraction function
must, of course, be monadic.

abstract :: Queue s a — ST s [a]

We omit the (easy) definition; note only that abstract must
not change the implementation state in any way.

An implementation is correct if it commutes with abstract:
that is, if the answer delivered is the same answer that the
specification delivers on the abstraction of the initial state,
and the final state, when abstracted, is the same as the final
state produced by the specification from the abstraction of
the initial state.

commutes 2 Eqa =
Queue s Int — (Queue s Int — ST s a) —
(Int] — (a,[Int])) —» ST s Bool
commutes ¢ a f = do
old <+ abstract q
T — agq
new < abstract q
return ((z, new) = f old)

Of course, this condition must hold in all states. But what
do we mean by “all states”? Certainly not all memory states:
the references that make up a queue representation must sat-
isfy a strong invariant — they must be linked together in a
linear chain, without loops, the head node must point at the
first and last element nodes, and so on. Trying to generate a
random heap state, with a rats’ nest of references, and then
select those that represent queues, would be both difficult
and hopeless in practice. Let us instead quantify over reach-
able states, that is, states which can actually be produced
by a sequence of queue operations. These automatically sat-
isfy the queue invariant, they can be represented naturally
by the sequence of operations which constructs them, and
they are the only states of interest anyway! Fortunately, we
have already defined a generator for well-formed sequences
of queue operations in the previous section, so now it is easy
to define when an operation correctly implements a specifi-
cation.

implements 2 Eqa =
(Vs. Queue s Int — ST sa) —
([Int] — (a,[Int])) — Property
a ‘implements f =
forAll (actions 0) $ X as —
runST (do
q < empty
perform q as
commutes q a f)

The correctness properties for add and front are now direct.

prop_Add n = add n ‘implements‘ adds n
prop_Front = front “implements‘ fronts

The empty operation does not quite fit this framework, since
it creates a queue rather than modifying an existing one. We
cannot reuse implements, but of course it is correct if the
representation it constructs abstracts to the empty queue in
the specification.

prop_Empty =
runST (do
q + empty
q' « abstract q
return (¢’ = (emptys :: [Int])))

Finally, the remove operation does not quite fit either, be-
cause it has a precondition: it can only be applied to non-
empty queues. Thus we need a version of implements which
quantifies over states satisfying a precondition.

implementsIf :: Eqa =
(Vs. Queue s Int — ST s Bool) —
(Vs. Queue s Int — ST s a) —
([Int] — (a, [Int])) —
Property
implementsIf pre a f =
forAll (actions 0) $ X as —
runST (do
q < empty
perform q as
pre q) =
runST (do
q < empty
perform q as
commutes q a f)

Now we can complete our specification:

prop_Remove =
implementsIf (liftM isJust o front) remove removeg

Once again, all properties succeed.

6. LESSONS FROM THE QUEUE EXAM-
PLE

We have shown how to represent two popular kinds of
specification as QuickCheck properties, and thus use them di-
rectly for testing. The key idea for coping with the monadic
nature of the implementation was to define a “queue pro-
gram language”, represented as a Haskell datatype, and
quantify over contexts. This enabled us to implement di-
rectly the definition of operational equivalence for testing
the algebraic specification, and to generate random reach-
able states to test the model-based one.

The reader may wonder why we did not represent program
fragments as monadic values — as semantics, rather than
abstract syntax. In principle this may seem attractive, but
there are major advantages in using a datatype.

e When tests fail, the values of quantified variables are
displayed. If we quantify over contexts, then we see the
abstract syntax tree, which is, of course, very useful.
The semantics of a context is a function, however: if
we quantified over this instead then we would see no
useful information on a test failure.

e As well as running program fragments, we may wish
to compute some of their properties by static analy-
sis, which requires an abstract syntax tree. A simple
example of this is the delta function, used above to
predict the changes in the number of elements in the
queue, when a queue program fragment is run.

e When we test code using the ST monad, then com-
putations have polymorphic types, and functions over
them must have rank-2 types. Examples are the im-
plements and implementsIf functions in the previous
section. These types can be quite complex, and more-
over must always be stated explicitly. By passing ab-
stract syntax trees instead, we avoid the need for most
rank-2 types.

Indeed, there is an even more severe problem. If we
were to quantify over the semantics of contexts in the ST
monad, by writing forAll contexts(A ¢ — ...), then since ¢
must have a polymorphic type, the A-expression must have
a rank-2 type, and forAll must be used at an instance with
a rank-3 type! This goes beyond what today’s implemen-
tations can support: Hugs allows only rank-2 types, and
although GHC now supports rank-k types (using Odersky
and Laufer’s work [20]), the type system is still predicative,
which means that type variables cannot be instantiated to
anything other than monotypes. To quantify over values
involving the ST monad, we would need to define a spe-
cial version of forAll, with an explicitly stated rank-3 type.
Moreover, we would need a different version of forAll for
each type of value quantified over, so these versions cannot
reasonably be placed in the QuickCheck library; they must
be defined by the user of QuickCheck, which is unacceptable.
Thus representing contexts by abstract syntax is essential to
making our approach work at all.

So far, we have used only QuickCheck as described in
our original paper [4], and it has worked pretty well; we
have needed no extensions specific to monads. However,
the shoe does pinch a little. Look back at the definition of
implementsIf (for testing an operation with a precondition):
in order to check that the state generated by the random
context satisfies the precondition, we had to run the code
generating it twice! We cannot write, for example,

pre ¢ => commutes q a f

inside a single call of runST, because = is a property com-
binator, and has the wrong type to appear in an ST com-
putation. We cannot either write

b « pregq
if b then
commutes q a f
else
return True

because this has a different meaning: it counts a test in
which the precondition is not satisfied as a successful test,
which is not what we want at all!

The problem is that we cannot use property operators
in the midst of a monadic computation and sometimes,
that is exactly what we want to do. Other examples would
be quantifying over the elements of a list produced by a
monadic computation, or collecting values generated in mo-
nadic code. This motivates extending QuickCheck with a
language of monadic properties: the subject of the next sec-
tion.

7. A LANGUAGE OF MONADIC SPECIFI-
CATIONS

Our goal is to extend QuickCheck with a new kind of
property, which can contain monadic computations in an
underlying monad m. We therefore define a property monad
PropertyM m a, whose elements may mix property oper-
ations and m-computations. This is really just a monad
transformer [16], whose lifting operation we call

run :: Monad m = m a — PropertyM m a

Non-monadic properties can be embedded in monadic ones
using

assert :: (Monad m, Testable a) =
a — PropertyM m ()

(where Testable types are those corresponding to properties
in vanilla QuickCheck). An assertion must hold when the
monadic property is tested.

Preconditions can be included in monadic properties using

pre @ Monad m = Bool — PropertyM m ()

Test cases in which preconditions fail are discarded, just like
when using the implication combinator =—>.
Using these operations, we can represent a Hoare triple

{p}z < e{q} as

pre p
T 4— Tun e
assert q

We can also think of run as a monadic weakest precondition
operator: we could define

wp © Monad m =
ma — (a — PropertyM m b) — PropertyM m b
wpmk=runm >=£k

and represent the weakest precondition wp(z <+ e,p) as
wpe$ Az — p.

We represent quantification in monadic properties by ei-
ther using

pick = (Monad m, Show a) =
Gen a — PropertyM m a

or, for more familiar notation,
forAlIM gen k = pick gen >=k

The choice between pick/forAlIM and run/wp is a matter
of taste: the latter operations resemble mathematical nota-
tion more closely, while the former let us take advantage of
Haskell’s do syntactic sugar.

We can make observations of test data using

monitor :: Monad m =
(Property — Property) — PropertyM m ()

For example, monitor (collect €) collects the distribution of
values of e. Finally, we can convert monadic properties back
to ordinary ones, given a “run function” for the underlying
monad, using

monadic :: Monad m =
(m Property — Property) —
PropertyM m () — Property
imperative :: (V b. PropertyM (ST b) ()) — Property

imperative is equivalent to monadic runST, except that the
latter would need impredicative rank-3 types and so cannot
be written.

Using these operations, we can revisit implementsIf and
rewrite it as follows:

implementsIf p a f = imperative (
forAlIM (actions 0) $ X as —
do

q ¢ run empty

run (perform q as)

ok + run (p q)

pre ok

b < run (commutes q a f)
assert b)

The repeated execution needed in the original version to test
the precondition is gone.

8. SEMANTICS OF MONADIC
PROPERTIES

QuickCheck properties enjoy both a computational and a
declarative reading, in which generators really denote sets,
— is true implication, and forAll is true quantification. In
the declarative reading, a property just denotes a truth value
(not necessarily computable). Of course, non-termination in
a property may make a declarative reading impossible, but
we restrict ourselves here to terminating programs whose
semantics can be modelled using sets and functions, rather
than domains and continuous functions. Even if there is
a mismatch here, the declarative reading is the “intended
semantics” which our Haskell implementation approximates.

But what is the declarative reading of a monadic prop-
erty? What is the logic which we are trying to represent?
Of course, monadic properties may be based on any monad,
not just the familiar state one. The meaning of properties
when the underlying monad permits backtracking through
preconditions, for example, or concurrency, is far from ob-
vious. In this section, we give a formal semantics to the
monadic property language which answers such questions.

We model monadic properties over a monad M as non-
empty sets of computations of the type M Bool. We use
sets to model quantification: a property forAlIM s p is mod-
elled by a set constructed from s. Given a satisfaction test
for the monad, testys :: M Bool — Bool, a monadic prop-
erty is satisfied if every computation in the set delivers True
when it 1s tested. Different choices for testys lead to differ-
ent interpretations of properties — for example, if M is the
list monad (representing backtracking computations), then
testyr might require that all possible results are True, that

the first result is True, or that some result is True. If M
is the Maybe monad, then testys might interpret Nothing as
True (testing for partial correctness) or False (total correct-
ness). We require only that testy (return b) = b.

Now, without loss of generality, we can assume (because
of their type) that monadic properties end in return (). Such
a property is trivially satisfied. (Note that it is solely the
assertions made during a monadic computation which intro-
duce truth values to be checked; the result of the computa-
tion plays no role and is therefore irrelevant.)

[return()] = {return True}

Otherwise, a property takes the form of m >= k for some m
and k. An assertion returns False if it is not satisfied:

[assert True>>p] = [p]
[assert False>>p] = {return False}

A precondition returns True if it is False.

[pre True>>p] = [p]
[pre False>>p] = {return True}

Quantification derives a set of computations from each ele-
ment of the set quantified over, and merges them — unless
the set we quantify over is empty, when it succeeds at once
(to ensure that the meaning of the property is a non-empty
set).

[pick 0>=k] = {return True}
[pick s>=k] = {m|z€s,melfkz]}, if s#0

Finally, running a computation of type M 7 is interpreted
as

[run m>=k] = {m>=k"| k¥ € 1 = M Bool,
Vz.k' z €[k z]}

Here k represents a function from 7 to a set of computations,
and k' is a function which makes a choice from each such set.
It is to make this possible that we require the meaning of a
property to be a non-empty set. The effect of this definition
is that, if there is quantification in k£ (perhaps depending
on the result delivered by m), then every possible choice is
represented by some m =k’ in the resulting set.

With these definitions, monadic properties have a well-
defined meaning no matter what the underlying monad is.

To understand these definitions a little bit better, it is
useful to instantiate them for a particular monad. It is easy
to see for example that taking the identity monad simply
reverts to basic QuickCheck properties. Let us also look at
a more elaborate example: As the underlying monad, we
take the list monad, and we look at the following somewhat
artificial property which depends on an unknown predicate

p:
do
T + run[1,2]

y « pick (elements [z + 3,z + 4])
assert (p T y)

(For convenience, we have left out the finishing return ().)

The operational reading is: We make two computations,
one where z equals 1, and the other where z equals 2. In
both computations, we pick an arbitrary element from the
list [z + 3,2 + 4] as the value for y, and finally we return
the two-list of the results.

The declarative reading of the two simple subexpressions
should also be clear:

lassert(p z)] = {[p = y]}

[pick(elements[z + 3,z + 4]) >=XAy — assert(p z y)] =
{lpe(z+3)pe(z+4)]}

The declarative reading of the whole property is:

{k'l # E'2|Vsk z€{lpz(z+3),[pz(z+4)]}
This last expression simplifies to:

{lply, p2y] |y € {1+3,14+4}, yo € {2+3,2+4}}

Which is the same as:

{lp14,p25],[p14, p26],[pl15, p25],[pl5, p26]}

Exactly what we expected! It then depends on the chosen
testy; function (and on p of course) which of the elements in
the set actually pass the test or not, and thus whether all
elements in the set pass the test.

9. IMPLEMENTING MONADIC PROPER-
TIES

The implementation of QuickCheck is based on the monad
Gen, an abstract type defined by

newtype Gen a = Gen (Int — StdGen — a)

Essentially a Gen a is a function from a random number
seed to an a: the Int parameter is used to control the size of
generated data and need not concern us here. QuickCheck
properties are just generators for test results

newtype Property = Prop (Gen Result)

where the Result type collects quantified variables, precon-
ditions, and monitoring information as well as representing
success or failure.

Monadic properties are built by combining Gen and a
CPS monad with the underlying monad m.

newtype PropertyM m a =
Monadic ((a — Gen (m Result)) —
Gen (m Result))

Using CPS enables pre and assert to discard the rest of a
property when their argument is false.

Given this type, the rest of the implementation is mostly
straightforward, and follows the semantics closely; indeed,
we added only about 30 lines of code to QuickCheck, and
did not need to change any existing code at all. The only
tricky part is the definition of run:

run m = Monadic (A k — liftM (m >=) (promote k))

Here the continuation k is of type a — Gen (m Result), but
before we apply liftM (m >=) to it, we must convert it to a
Gen (a — m Result). Because of the way we defined Gen
this is simple to do: the promote function need only swap
the arguments of the function it is passed, to take the ran-
dom number seed and size first, rather than the a. But
this kind of promotion is quite impossible for most mon-
ads: indeed, for the monad Set (which Gen is supposed to
represent), promote corresponds to applying the Axiom of
Choice! No wonder this seemingly simple definition is some-
what counter-intuitive.

data Element s a = Element a (STRef s (Link s a))
data Link s a = Weight Int | Next (Element s a)

newElement :: a — ST s (Element s a)
newFlement a = do
r <« newSTRef (Weight 1)
return (Element a r)

findElement :: Element s a — ST s (Element s a)
findElement (Element a r) =
do
e < readSTRef r
case ¢ of
Weight w — return (Element a r)
Next next — do
last <+ findElement next
writeSTRef r (Next last)
return last
unionElements ::
Element s a — Element sa — ST s ()
unionElements el €2 =
do
Element al rl < findElement el
Element a2 r2 + findElement e2
Weight wl < readSTRef rl
Weight w2 < readSTRef r2
if wl < w2 then
do
writeSTRef r1 (Next (Element a2 r2))
writeSTRef r2 (Weight (wl + w2))

else
do
writeSTRef r2 (Next (Element al r1))
writeSTRef r1 (Weight (w1l + w2))

instance Fq (Element s a)
where

Element _r = Element _v' = r =1’

Figure 1: The Union-Find Algorithm.

10. ANOTHER EXAMPLE: THE UNION/
FIND ALGORITHM

As an example which makes extensive use of monadic
properties, we shall test the Union/Find algorithm. This
is a very efficient way to represent an equivalence relation.
Elements of the relation are organised into trees representing
equivalence classes, with each element containing a pointer
to its parent. By following these pointers to the root of each
tree, we can find a distinguished element of each equiva-
lence class; the operation which does so is called find. We
can test whether two elements are equivalent by comparing
the results of find on each one. Equivalence classes can also
be merged by declaring two elements to be equivalent: this
is done by the function union, and achieved by making the
root of one tree point at the root of the other.

The Union/Find algorithm owes its great efficiency to two
optimisations:

e After find has traversed a path to the root of a tree, it
updates all the elements in the path to point directly
at the root. This speeds up subsequent finds.

e When trees are merged, the root of the lighter tree is

made to point at the root of the heavier, where the
weight of a tree is the number of elements in it. This
also speeds up subsequent finds.

With these optimisations, a sequence of union and find op-
erations is executed in almost linear time (where “almost”
involves the inverse of the Ackermann function, so for all
practical purposes we can consider the time to be linear).

A Haskell implementation of the Union/Find algorithm is
very simple; one appears in Figure 1. Elements are repre-
sented by the type Element, contain a value (so we can rep-
resent equivalence relations on other types), and are created
by the function newElement. The find and union operations
are implemented by findElement and unionElements. Fi-
nally, Elements can be compared, so we can decide whether
two results of findElement are the same. Elements contain
an updateable Link, which in the case of root nodes contains
a weight, and for other nodes contains the parent.

11. TESTING PRE-ANDPOSTCONDITIONS
FOR UNION/FIND

We shall test our Union/Find implementation using yet
a third method: be specifying pre- and post-conditions for
each operation. With this approach, we need neither an
abstract model, nor algebraic laws. But we will still need
to quantify over reachable states. As before, we define a
language of union/find programs.

data Action = New | Find Var | Union Var Var
deriving Show
type Var = Int

A program is a list of Actions, which may create, find, or

unite elements. The arguments of findElement and unionElements

may be any element previously created by newElement; we
use natural numbers to refer to them in order of creation.
The semantics of action sequences is defined by

exec :: [Action] — [Element a ()] —
ST a[Element a ()]

which delivers as its result a list of the Elements created by
newElement.

Of course, only certain union/find programs are well-formed:
we must not use an Element which has not been created.
We therefore define a generator for the set of programs well-
formed in the context of k elements.

actions :: Int — Gen [Action]
actions 0 =
frequency [(25, lift M (New :) (actions 1)),

(1, return [])]
actions n =

frequency
[(2, liftM (New :) (actions (n + 1))),
(2, liftM 2 (:) (liftM Find element)
(actions n)),
(2, liftM 2 (:) (liftM 2 Union element

element)
(actions n)),
(1, return [])]
where
element = choose (0, n — 1)

When the number of elements is zero, the only possible ac-
tion is New: we give this a high probability, to avoid a large

number of tests in the initial state. Similarly, we assign
a higher probability to choosing an operation than to re-
turning the empty list: we can expect to generate action
sequences with an average length of 7 using this definition.

Now we can define a combinator for quantifying over all
states.

forAllStates
(V s. [Element s ()] — PropertyM (ST s) a) —
Property
forAllStates p =
forAll (actions 0) $ X as —
imperative (do
vars < run (ezec as [])
p vars)

We pass the property p a list of all created Elements; in
most properties we need to quantify over the elements of
this list.

This quantification poses a problem, though. QuickCheck’s
quantification operators can only quantify over types in class
Show, since the value chosen must be displayed when a test
fails. But FElements cannot be shown, since they contain
STRefs, and this is an abstract type for which show is not
defined. Of course, we could define our own Show instance
to display references as " < STRef >", but this would not be
useful! We want to know which element was chosen when a
test fails!

Our solution to the “abstract type quantification” prob-
lem is to quantify over an element’s position in a list instead:
as long as we know how the list is constructed, we can in-
fer which element was used. In this case, we use the list of
created Flements passed to properties by forAllStates. We
define a function

pickElement :: Monad m = [a] — PropertyM m a
pickElement vars =
do

pre (not (null vars))
i« pick (choose (0, length vars — 1))
return (vars!! 1)

which quantifies over this list, and imposes a precondition
that it be non-empty.

Now we just need to characterise the behaviour of findElement

and unionElements using pre- and postconditions. We will
need to refer to the distinguished representative of each
equivalence class, so we define

representative :: Element a b — ST o (Element a b)

to find it. Of course, this function delivers the same result
as findElement, but without a side effect. It is just for use
in formulating properties.

Let us begin! Firstly, findElements returns the represen-
tative of its argument.

prop_FindReturnsRep =
forAllStates (X vars —
do
v < pickElement vars
r <« run (representative v)
r" « run (findElement v)
assert (r=r"))

Secondly, findElement does not change the representative of
any element.

prop_FindPreservesReps =
forAliStates (X vars —
do

(v,v') + two (pickElement vars)
r0 « run (representative v)
r" « run (findElement v')
rl < run (representative v)
assert (r0= r1))

Thirdly, unionElements does not change the representatives
of elements which were not previously equivalent to one of
its arguments.

prop_UnionPreservesOtherReps =
forAllStates (X vars —
do
(v0,v1,v2) < three (pickElement vars)
[r0, 71, 72] «
run (mapM representative [v0, v1, v2])

pre (r0 £ r1 A 70 # 12)
run (unionElements v1 v2)
r0’" < run (representative v0)
assert (r0 = r0"))

Finally, unionElements really does unite equivalence classes.
We express this by stating that all the elements of the equiv-
alence class of either argument have the same representative
afterwards.

prop_-UnionUnites =
forAliStates (X vars —
do
(vl,v2) « two (pickElement vars)
cl < run (equivClass vars v1)
c2 <+ run (equivClass vars v2)
run (unionElements v1 v2)
el < run (mapM representative cl)
c2'" « run (mapM representative c2)
assert (length (nub (c1' + ¢2')) = 1))
where
equivClass vars v = filterM (= v) vars
el = e2 = liftM2 (=) (representative el)
(representative €2)

We claim that these properties are easy to read and write.
Moreover, note that we have taken great advantage of the
monadic property language: preconditions, quantifications,
and computations are thoroughly mixed in these properties.

Let us test one more property: the “weight invariant”
stating that each root node contains a weight equal to the
number of elements which it represents.

prop_WeightInvariant =
forAllStates (X vars —
do

v pickElement vars
r@Q(FElement _link) < run (representative v)
Weight w < run (readSTRef link)
rs « run (mapM representative vars)
assert (w== length (filter (= r) rs)))

This property is not necessary for correctness, but it is for
efficiency. Surprisingly, when we quickCheck it, it fails! Af-
ter a few tries to find a small counter-example, we find

UnionFind > quickCheck prop_WeightInvariant
Falsifiable, after 3 tests :

[NewElement, UnionElements 0 0]
0

This tells us that the weight of element 0 is wrong after it is
unioned with itself. Inspecting the code of unionElements,
we quickly see why: we forgot to consider the case when the
two arguments are already equivalent. In that case, we need
do nothing and in particular, the weight should not be
updated. Adding this special case makes all properties go
through.

12. TESTING A MODEL-BASED SPECIFI-
CATION OF UNION/FIND

Just as we tested queues using a specification based on
an abstract model, we can test the Union/Find algorithm
in the same way. We shall model elements by natural num-
bers in the range 0...k, and the state by a function repr
from {0...k} to itself, which maps elements to their repre-
sentative. We can conveniently represent such a function in
Haskell by a list (so we apply it to an element z by writing
repr !l). We define an abstraction function to recover the
abstract state.

abstract it [Element a b] — ST a[Int]
abstract vars = mapM abs vars
where
abs v = do

r < representative v
return (position vars r)

where position returns the position of an element in a list.
The abstract state must satisfy an invariant: repr o repr
must equal repr. We write

prop_Invariant = forAllStates (A vars —

do
repr < run (abstract vars)
assert (repr = map (repr!)) repr))

Now, notice that (as far as correctness is concerned) it
does not matter whether union makes its first argument
point to its second, or vice versa. Rather than specify
this behaviour exactly, we shall use relational specifications
which leave some freedom to the implementor. Thus we
specify our operations via a predicate which must hold on
the inputs, initial state, output, and final state, rather than
by giving a function from the former to the latter. The
specifications of find and union are easy to write:

findS z repr y repr’ =
repr = repr’ A y =— repr!!

unionS z y repr () repr’ =

let
2z = repr' |l
in
(z=reprl z V z = repr!l y) A
repr’ = [if 2’ = repr!! £V 2’ = repr!! y then
z
else

2" | 2" « repr]

These specifications closely resemble Z schemas [11].
We define a combinator expressing that a monadic com-
putation implements such a specification:

implements vars m s =
do
repr < run (abstract vars)
ans run m
repr’ < run (abstract vars)
assert (s repr ans repr’)

Now it only remains to state that findElement and union-
Elements implement the specifications above, for all choices
of elements. The only (slight) complication is that we must
convert elements from their concrete to their abstract rep-
resentation (using position vars) before we can compare im-
plementation and specification.

prop_Find = forAllStates (A vars —
do
v < pickElement vars
implements vars
(liftM (position vars) (findElement v))
(findS (position vars v)))

prop_Union = forAllStates (XA vars —
do
(v,v") « two (pickElement vars)
implements vars
(unionElements v v')
(unionS (position vars v) (position vars v')))

This completes the model-based specification: it is pleas-
ingly simple. Indeed, model-based specifications are often
simpler than pre- and postcondition specifications such as
we gave in the previous section, since the latter are couched
in terms of the (generally more complex) implementation
state. So why not always use model-based specifications?
Firstly, it is useful to be able to test pre- and postconditions,
since in some cases one may just wish to test a few such prop-
erties without going to the trouble of defining a complete ab-
stract model. Secondly, because the pre- and post-condition
style is expressed entirely in terms of the implementation
state, these properties can often be tested more efficiently
than those in the model-based style (although speed is not
a problem in these examples).

13. A GENERAL MODEL-BASED SPECI-
FICATION FRAMEWORK

Fully formal specifications can become quite complex (this
is true whether they are used for testing or any other pur-
pose). An advantage of representing them in a language
like Haskell, with powerful abstraction mechanisms, is that
we can hope to find “higher-level combinators” which make
specifications easier to write. In this section we sketch an
initial step in this direction: a library for model-based spec-
ification of imperative ADTs, which we apply to the queue
example once more.

The library is based on two abstract types, the first of
which is

data Action m spec impl = ...

An element of this type represents a concrete operation in
the monad m, that works on an implementation type impl,
and has an abstract functional counterpart of type spec. For
example, in the case of queues, m is the monad ST s, spec
is the type [Int], and impl is the type Queue s Int; an ac-
tion might represent the operation add 23. However, an ac-
tion contains both the specification and implementation of

an operation, and when executed, tests if the observational
outputs of the action are the same. In the queue exam-
ple, we check that all calls to the implementation of front
produce the same answer as the specification — this is our
correctness criterion.

The function

sameQutput . [Action m spec impl] — m Bool

executes a list of actions in sequence, thus checking that the
observable outputs of all actions are the same.
The second abstract type is

data Method m spec impl = ...

A Method represents an Action generator — for example,
corresponding to add, from which the Action add 23 can be
generated. Methods are constructed using method combina-
tors, as in this example, which specifies the queue methods:

methods_Queue :: [Method (ST s) [Int] (Queue s Int)]
methods_Queue =
[name” empty” $ methodInit [] empty,
name ” add” $ arg arbitrary $ Az —
methodl adds add,
name ” front” $ methodl fronts front,
name ” remove”
method1Pre (not . null) removes remove]

Here, name specifies the name of an operator (for debug-
ging output). The method constructor methodInit specifies
a method that creates an object, method1 specifies a method
that transforms one object, method1Pre specifies a method
that has a precondition, and there are other method con-
structors. The method combinator arg is used to specify an
argument to a method.

Given such a list of methods, we can generate random se-
quences of actions which correspond to calls of the methods.
This is done by the generator actions:

actions :: [Method m spec impl] —
Gen [Action m spec impl]

This function keeps track of the abstract state when gener-
ating the list of actions, and at any point in time only picks
methods whose precondition is satisfied. The current version
of actions makes a property fail if it gets to a state where
there are no methods which can be performed — when it
is "stuck”. Of course, it depends on the application if this
really is an error or not.

Note that the list of the list of methods denotes a choice
of methods, whereas the list in the list of actions denotes a
sequence of actions.

Finally, we check that all generated action sequences pro-
duce the same output in the abstract and concrete seman-
tics. This is done by the function commutes:

commutes :: [Method m spec impl] — PropertyM m ()
commutes methods =
forAlIM (actions methods) $ Macts —

do
b « sameOutput acts
assert b

Notice that, in monadic properties, we can quantify over the
semantics of actions the “rank-3” problem discussed in
section 6 is avoided.

Using the library, a full correctness specification of the
queue example looks like this:

prop_Queue = imperative (commutes methods_Queue)

Together with the definition of methods_Queue, this is only
a few lines.

14. RELATED WORK

There are two other automated testing tools for Haskell.
HUnit is a unit testing framework based on the JUnit frame-
work for Java, which permits test cases to be structured hi-
erarchically into tests which can be run automatically [12].
HUnit allows the programmer to define “assertions”, but
these apply only to a particular test case, and so do not
make up a specification. There is no automatic generation
of test cases.

Auburn [18] is a tool primarily intended for benchmarking
abstract data types. Auburn generates random “datatype
usage graphs” (dugs), corresponding to our “queue pro-
grams” etc, and measures the time to evaluate them. Auburn
can produce dug generators and evaluators automatically,
given the signature of the ADT. It avoids generating ill-
formed dugs by tracking an abstract state, or “shadow”,
for each value of the ADT, and checking preconditions ex-
pressed in terms of it before applying an operator. Dug
generators are parameterised on the desired frequency of
the different operations, size of data to generate, degree of
sharing etc, so that benchmarking corresponds as closely as
possible to real conditions. Benchmarking can reveal errors
in the ADT implementation, but since there is no specifi-
cation or other test oracle then they are discovered only if
they lead to run-time failure.

The Hat tracer for Haskell [25] is not a testing tool, but
enables the programmer to browse a computation once it
has failed. We are investigating integrating it with Quick-
Check, so that the tracer can be invoked when QuickCheck
discovers a fault.

The more general testing literature is voluminous.

Random testing dates from the 1960s, and is now used
commercially, especially when the distribution of random
data can be chosen to match that of the real data. It com-
pares surprisingly favourably in practice with systematic
choice of test cases. In 1984, Duran and Ntafos compared
the fault detection probability of random testing with parti-
tion testing, and discovered that the differences in effective-
ness were small [6]. Hamlet and Taylor corroborated the
original results [10]. Although partition testing is slightly
more effective at exposing faults, to quote Hamlet’s excel-
lent survey [9], “By taking 20% more points in a random
test, any advantage a partition test might have had is wiped
out.” Our philosophy is to apply random testing at a fine
grain, by specifying properties of most functions under test.
So even when QuickCheck is used to test a large program, we
always test a small part at a time, and are therefore likely
to exercise each part of the code thoroughly.

Invoking sequences of operations to test abstract data
types is a standard approach (how else could it be done?).
Generating random sequences of operations, while still ful-
filling all preconditions, is not so common. QOur test data
generation language, embedded in Haskell, makes this easy.
The connection we have drawn between random sequences
of operations and the definition of observational equivalence
is new.

Algebraic specifications have been used by many authors
as a foundation for testing. The first system based on this
idea was DAISTS [8], which tested abstract data types by
evaluating and comparing the left and right hand sides of
equations in the specification, in test cases supplied by the
user. Although the language used was imperative, abstract
data type operations were forbidden to side-effect their ar-
guments, so the programs to be tested were essentially re-
stricted to be functional.

Later work aims to relax this restriction: Antoy and Ham-
let describe a technique for testing C++ classes against an
algebraic specification, which is animated in order to pre-
dict the correct result [1]. The specification language must
be somewhat restricted in order to guarantee that specifica-
tions can be animated. The concrete and abstract states are
related by a programmer-defined abstraction function, just
as in this paper. Antoy and Hamlet do not address test case
generation, leaving that as a problem for a separate tool.

Bernot, Gaudel, and Marre developed a theory of test-
ing, which formalises the assumptions on which selection of
test cases is based [2]. They developed a tool for test case
selection based on an algebraic specification.

One unusual feature of the algebraic specifications in this
paper is that they relate monadic terms, in which the under-
lying state is implicit. More commonly in algebraic specifica-
tions, the state is an explicit argument and result. (Perhaps
this is because algebraic specification frameworks tend to
be first order.) Relating programs rather than states lets us
write equations which apply directly to the imperative im-
plementation. We believe we are the first to directly verify
such equations by testing: recall that DAISTS was limited
to testing pure functions, and Antoy and Hamlet used their
equational specification to derive rewrite rules, rather than
testing the equations in it directly.

Model-based specifications have also been used as a foun-
dation for testing. Stocks and Carrington developed a frame-
work for deriving test frames (characterising a class of test
cases) from a Z specification [24]. They derived test frames
manually, but Donat has developed an automatic tool for do-
ing so [5]. Model-based specifications have also been used as
test oracles. A tool for instrumenting C++ classes to check
pre- and post-conditions derived from a model-based spec-
ification has been developed by Edwards [7]. Mueller and
Korel test C code against a formal specification by trans-
lating the specification into code which checks the results of
the test, and generating test cases either randomly or using
existing test case generators [19]. The case studies used are
rather small though the most complex is the C string
copy function.

All of this work requires some preprocessing or analysis
of specifications before they can be used for testing. Quick-
Check is unique in using specifications directly, both for test
case generation and as a test oracle. The other side of the
coin is that the QuickCheck specification language is neces-
sarily more restrictive than, for example, predicate calculus,
since properties must be directly testable.

Pitts’ evaluation logic bears some resemblance to our monadic

property language [23]. It is also parameterised on a monad,
and permits properties to be stated which hold after a com-
putation. Pitts writes [z <= e] P where we write run e >=\ ¢
However, the two languages differ in essential ways. For ex-
ample, Pitts can write [z < e]P A [z’ < €'|P’', meaning
that if we compute e, then P will hold, but if we compute

— P.

e', then P’ will hold. We cannot express this — indeed, we
have no conjunction operator, but the reason is deep seated.
To test this property, we would have to compute both e and
e’ in some order! But Pitts’ property talks about the state
after computing one or the other, but not both.

QuickCheck’s main limitation as a testing tool is that it
provides no information on the structural coverage of the
program under test: there is no check, for example, that
every part of the code is exercised. We leave this as the
responsibility of an external coverage tool. Unfortunately,
no such tool exists for Haskell! It is possible that Hat could
be extended to play this role.

15. CONCLUSIONS

In this paper, we have shown how QuickCheck can be used
for specification-based testing of imperative operations. The
main contributions are:

e We have made a link between testing of imperative
code and the concept of observational equivalence.

‘We have shown how equations between imperative code
fragments can be tested directly, by running each frag-
ment in the same context. Representing contexts ex-
plicitly by data structures was a key step here.

We have defined and given the semantics of a new kind
of monadic properties, parameterised over any monad.

‘We have shown that the QuickCheck property language,
despite its limitations, is sufficiently powerful to rep-
resent many common specification formalisms (alge-
braic specifications, functional models, relational mod-
els, pre- and post-conditions).

‘We have shown that each formalism so represented can
be used directly for testing imperative code.

It will be exciting to formulate further formal systems
using QuickCheck.

16. REFERENCES

[1] S. Antoy and R. Hamlet. Automatically checking an
implementation against its formal specification. In
Irvine Software Symposium, pages 29 48, March 1992.

[2] Gilles Bernot, Marie Claude Gaudel, and Bruno
Marre. Software Testing based on Formal
Specifications: a theory and a tool. Software
Engineering Journal, 6(6):387-405, Nov 1991.

[3] F. Warren Burton. An efficient functional
implementation of FIFO queues. Information
Processing Letters, 14(5):205-206, July 1982.

[4] Koen Claessen and John Hughes. Quickcheck: a
lightweight tool for random testing of haskell
programs. In International Conference on Functional
Programming, pages 268 279. ACM, 2000.

[6] M. Donat. Automating Formal Specification Based
Testing. In M. Bidoit and M. Dauchet, editors, Proc.
Conf. on Theory and Practice of Sw Development
(TAPSOFT 97), volume 1214, pages 833-847, Lille,
France, 1997. Springer-Verlag, Berlin.

[6] J. Duran and S. Ntafos. An evaluation of random
testing. Transactions on Software Engineering,

10(4):438 444, July 1984.

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Stephen H. Edwards. A framework for practical,
automated black-box testing of component-base
software. Software Testing, Verification and
Reliability, 11(2), June 2001.

J. Gannon, R. Hamlet, and P. McMullin. Data
abstraction implementation, specification, and testing.
Trans. Prog. Lang. and Systems, (3):211-223, 1981.
D. Hamlet. Random testing. In J. Marciniak, editor,
Encyclopedia of Software Engineering, pages 970-978.
Wiley, 1994.

R. Hamlet and R. Taylor. Partition testing does not
inspire confidence. Transactions on Software
Engineering, 16(12):1402 1411, December 1990.

I. J. Hayes, editor. Specification Case Studies. Prentice
Hall International Series in Computer Science, 2nd
edition, 1993.

Dean Herington. HUnit 1.0 User’s Guide, 2002.
http://hunit.sourceforge.net/HUnit-1.0/Guide.html.
P. Hudak. Modular Domain Specific Languages and
Tools. In Proceedings of Fifth International
Conference on Software Reuse. TEEE Computer
Society, Jun 1999.

Simon Peyton Jones. Tackling the awkward squad:
monadic input/output, concurrency, exceptions, and
foreign-language calls in Haskell. In Tony Hoare,
Manfred Broy, and Ralf Steinbruggen, editors,
Engineering theories of software construction, pages
47-96. 10S Press, 2001. Presented at the 2000
Marktoberdorf Summer School.

J. Launchbury and S. Peyton Jones. State in Haskell.
Lisp and Symbolic Computation, 8(4):293-341,
December 1995.

S. Liang, P. Hudak, and M. Jones. Monad
transformers and modular interpreters. In Conference
Record of POPL’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 333 343, San Francisco, California, 1995.

Tom Moertel. Seven Lessons from the ICFP
Programming Contest.
http://www.kurobhin.org/story/2001/7/31/0102/11014,
2001.

Graeme E. Moss and Colin Runciman. Automated
benchmarking of functional data structures. In
Practical Aspects of Declarative Languages, pages

1 15, 1999.

C. Mueller and B. Korel. Automated evaluation of
cots components. In First International Workshop on
Automated Program Analysis, Testing and
Verification, Limerick, Ireland, 2000. In conjunction
with ICSE 2000.

Martin Odersky and Konstantin Laufer. Putting type
annotations to work. In Conference Record of POPL
’96: The 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, St.
Petersberg Beach, Florida, pages 54-67, New York,
NY, 1996.

Chris Okasaki. An Overview of Edison. In Haskell
Workshop, pages 34 54, September 2000.

S. L. Peyton Jones and P. Wadler. Imperative
Functional programming. In Proceedings 1993
Symposium Principles of Programming Languages,
Charleston, N.Carolina, 1993.

23]

24]

[25]

Andrew M. Pitts. Evaluation logic. In G. Birtwistle,
editor, Proceedings of the IVth Higher Order
Workshop, pages 162 189. Springer-Verlag, 1990.

Phil Stocks and David Carrington. A Framework for
Specification Based Testing. Transactions on Software
Engineering, 22(11), Nov 1996.

Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and
Colin Runciman. Multiple-View Tracing for Haskell: a
New Hat. In Haskell Workshop. ACM, September
2001.

https://www.researchgate.net/publication/2831386

