
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2831386

Testing Monadic Code with QuickCheck

Article in ACM SIGPLAN Notices · June 2002

DOI: 10.1145/636517.636527 · Source: CiteSeer

CITATIONS

69
READS

838

2 authors, including:

Some of the authors of this publication are also working on these related projects:

PROWESS View project

John Hughes

Chalmers University of Technology

152 PUBLICATIONS 7,690 CITATIONS

SEE PROFILE

All content following this page was uploaded by John Hughes on 28 December 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2831386_Testing_Monadic_Code_with_QuickCheck?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2831386_Testing_Monadic_Code_with_QuickCheck?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/PROWESS?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Hughes-22?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Hughes-22?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chalmers-University-of-Technology?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Hughes-22?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Hughes-22?enrichId=rgreq-5fdbd5f973876856676706b3145f6cc3-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEzODY7QVM6OTg2Mjk3MTcwNjk4MzNAMTQwMDUyNjU2NTk5Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Testing Monadic Code with QuickCheck

Koen Claessen and John Hughes
Department of Computer Science
Chalmers University of Technologyfkoen,rjmhg�
s.
halmers.se

ABSTRACTQui
kChe
k is a previously published random testing toolfor Haskell programs. In this paper we show how to use itfor testing monadi

ode, and in parti
ular imperative
odewritten using the ST monad. Qui
kChe
k tests a programagainst a spe
i�
ation: we show that Qui
kChe
k's spe
i�-
ation language is suÆ
iently powerful to represent
ommonforms of spe
i�
ations: algebrai
, model-based (both fun
-tional and relational), and pre-/post-
onditional. Moreover,all these forms of spe
i�
ation
an be used dire
tly for test-ing. We de�ne a new language of monadi
 properties, andmake a link between program testing and the notion of ob-servational equivalen
e.
1. INTRODUCTIONQui
kChe
k [4℄ is an automated testing tool for Haskellprograms. It de�nes a formal spe
i�
ation language whi
hprogrammers
an use to spe
ify the
ode under test, andthen
he
ks that the stated properties hold in a large numberof randomly generated test
ases. Spe
i�
ations are thusused dire
tly, both for test
ase generation and as a testora
le. The bene�ts of usingQui
kChe
k are do
umented andrepeatable testing, and produ
tion of a spe
i�
ation whi
hhas been ma
hine-
he
ked for
onsisten
y with the program.While there is no guarantee that the spe
i�ed propertieshold in general, we and others have found this approa
h tobe highly e�e
tive at revealing errors qui
kly [21, 17℄.In our �rst Qui
kChe
k paper, we fo
ussed on testing purefun
tions, whi
h are easier to test than side-e�e
ting onessin
e one need not take a potentially large and
omplex stateinto a

ount. Haskell programs
onsist to a large extent ofpure fun
tions, and so this fo
us was not a major restri
-tion. Yet even in Haskell, imperative data-stru
tures andalgorithms are sometimes important for a
hieving good per-forman
e; hen
e the popularity of monads [22℄, and Peyton-Jones'
laim that Haskell is \the world's �nest imperativeprogramming language" [14℄. Thus, in this paper, we shallshow how Qui
kChe
k
an be used to test monadi
 Haskell
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ode, and espe
ially imperative
ode using the ST monad[15℄.The key problem is
onstru
ting spe
i�
ations of monadi

ode that
an be used dire
tly for testing. Although thisis not as straightforward as for pure fun
tions, we shallshow that by borrowing
on
epts from programming lan-guage theory, we
an
onstru
t testable spe
i�
ations basedon algebrai
 laws, abstra
t models, or pre- and post
on-ditions. We introdu
e a new monadi
 property language,whi
h simpli�es these spe
i�
ations
onsiderably. Our mainexamples are an imperative implementation of queues, andthe Union/Find algorithm.The stru
ture of the paper is as follows. In the next se
-tion, we introdu
e Qui
kChe
k as previously des
ribed. Inse
tion 3 we introdu
e the queue example. Se
tion 4 presentsan algebrai
 spe
i�
ation of imperative queues, and showshow it
an be used for testing, introdu
ing the key idea oftesting observational equivalen
e. The next se
tion repeatsthe exer
ise for a model-based spe
i�
ation instead. Se
-tion 6 draws lessons from the queue example, in parti
ularthe desirability of extending Qui
kChe
k with a language ofmonadi
 properties. The next three se
tions introdu
e thislanguage, present a formal semanti
s, and sket
h its imple-mentation. We illustrate the monadi
 property language bytesting the Union/Find algorithm in the next three se
tions,whi
h introdu
e the algorithm, test it using pre- and post-
onditions, and using a relational model-based spe
i�
ationrespe
tively. Spe
i�
ations
an be
ome quite bulky; se
tion13 illustrates an approa
h to simplifying them, by de�ningeven higher-level
ombinators for model-based spe
i�
ationof imperative ADTs, whi
h make su
h spe
i�
ations very
on
ise. Finally, se
tion 14 dis
usses related work, and se
-tion 15
on
ludes.
2. BACKGROUND: AN OVERVIEW OF

QUICKCHECKQui
kChe
k is used by adding property de�nitions to theprogram
ode, either together with the
ode under test, orin separate \spe
i�
ation" modules. Properties are simplyHaskell de�nitions, su
h as the following:prop PlusAsso
 :: Int ! Int ! Int ! Boolprop PlusAsso
 x y z = (x + y) + z == x + (y + z)Properties are impli
itly universally quanti�ed over their ar-guments, so this property states the asso
iativity of integeraddition.Properties are tested by passing them to the fun
tionqui
kChe
k . For example, using the Hugs interpreter we

would test the property above byMain> qui
kChe
k prop PlusAsso
OK ; passed 100 tests:This tests the property in one hundred randomly gener-ated
ases. The fun
tion qui
kChe
k is overloaded, to a
-
ept properties with any number of arguments, and we alsoprovide a small s
ript whi
h invokes qui
kChe
k on everyproperty in a module (property names begin with \prop "just so that this s
ript
an �nd them).The Qui
kChe
k property language also provides
ondi-tional properties. For example,prop InsertOrdered :: Int ! [Int ℄ ! Propertyprop InsertOrdered x xs = ordered xs =)ordered (insert x xs)states that inserting an element into an ordered list produ
esan ordered list. Testing su
h a property dis
ards test
aseswhi
h do not satisfy the pre
ondition, to guarantee that wetest the
on
lusion with 100 ordered lists. Noti
e that the re-sult type is di�erent in this
ase: =) isn't a simple booleanoperator sin
e it a�e
ts the sele
tion of test
ases. All su
hoperators in Qui
kChe
k have the result type Property .Alternatively, rather than quantify over all lists and thensele
t the ordered ones, we
an quantify expli
itly over or-dered ones:prop InsertOrdered :: Int ! Propertyprop InsertOrdered x = forAll orderedLists $ � xs !ordered (insert x xs)This makes for more eÆ
ient testing and, often, better test
overage.The �rst argument of forAll above, orderedLists , is a testdata generator. We
an think of it as representing a set thatwe quantify over, or, more pre
isely, a probability distribu-tion over su
h a set. Qui
kChe
k also provides a test datageneration language for de�ning su
h sets. Test data gener-ators have types of the form Gen � , where Gen is a monad,whi
h enables us to use Haskell's monadi
 synta
ti
 sugarand ri
h library of monadi
 operators in test data generatorde�nitions. In addition, there are
ombinators for making
hoi
es between alternatives, su
h asoneof :: [Gen �℄ ! Gen �whi
h
hooses between alternatives with equal probability,or frequen
y :: [(Int ;Gen �)℄ ! Gen �whi
h atta
hes a weight to ea
h alternative.We
an de�ne a default test data generator for ea
h typeas an instan
e of the
lass Arbitrary :
lass Arbitrary �wherearbitrary :: Gen �Qui
kChe
k provides instan
es of this
lass for all of Haskell'sstandard types. These default generators are used to
on-stru
t top-level property arguments, or of
ourse if the pro-grammer writes forAll arbitrary expli
itly.Qui
kChe
k provides several fun
tions for making observa-tions of test data, of whi
h the most important is
olle
t . Forexample, we
ould observe the lengths of lists in prop Insert-Ordered by rede�ning it as

prop InsertOrdered x xs = ordered xs =)
olle
t (length xs) $ ordered (insert x xs)whi
h
auses a table showing the distribution of length xs inthe a
tual test data to be displayed when testing is
omplete.The programmer
an then de
ide whether the test
overagewas adequate, or not.Apart from the small s
ript for extra
ting and testingproperties from modules, Qui
kChe
k is de�ned entirely as a
olle
tion of
ombinators | it is a domain spe
i�
 embeddedlanguage [13℄. To use it, the programmer need only importmodule Qui
kChe
k | whi
h is itself only 300 lines of
ode!Its lightweight nature makes Qui
kChe
k easy to modify andexperiment with.
3. A SIMPLE EXAMPLE: QUEUESWe shall take as an example one of the simplest imperativeabstra
t datatypes, a queue. We assume we are given amodule implementing queues, with the signaturedataQueue s a = : : :empty :: ST s (Queue s a)add :: Queue s a ! a ! ST s ()remove :: Queue s a ! ST s ()front :: Queue s a ! ST s (Maybe a)whose operations
reate an empty queue, add an element,remove an element, and return the front element withoutremoving it, if there is one. Queues are implemented in thestandard imperative way, so the queue operations have typesin the ST monad, and the Queue type is parameterised onthe state thread it belongs to. We omit the details of theimplementation.Of
ourse, there are eÆ
ient ways to implement queuespurely fun
tionally also [3℄, but this is not the point: queuesserve here simply as an example of an abstra
t datatype withan imperative implementation. In the following se
tions weshall see how we
an spe
ify their behaviour.
4. TESTING AN ALGEBRAIC SPECIFICA-

TION OF QUEUESOne well established way to spe
ify an abstra
t datatypeis via an algebrai
 spe
i�
ation, in whi
h we
hara
terise thebehaviour of our operations by giving equations betweenterms. For example, if we were spe
ifying Haskell's lists,then one su
h equation might bexs ++ (ys ++ zs) = (xs ++ ys) ++ zsIn this
ase, sin
e our operations are monadi
, we will giveequations between fragments of monadi

ode, that is, pro-gram fragments whi
h might appear as part of a do blo
k.Our spe
i�
ation of queues is given below.

q emptyx front q = q emptyx return Nothing (1)q emptyadd q mx front q = q emptyadd q mx return (Just m) (2)add q madd q nx front q = add q mx front qadd q n (3)q emptyadd q mremove q = q empty (4)add q madd q nremove q = add q mremove qadd q n (5)Are these equations a
omplete spe
i�
ation? Do they de-�ne the behaviour of every sequen
e of queue operations? Tosee that they do, we shall argue that every su
h sequen
e
an be put into a normal form
onsisting of queue
reation,followed by any number of add operations, followed by bind-ings of variables to values (via x return v). Consider anysu
h sequen
e, and
onsider the �rst use of front or remove ,if one exists. If this �rst use is of front , then equations (1)to (3) allow us to remove it, by moving it earlier until it
anbe repla
ed by a return . Bindings using return
an thenbe moved to the end of the sequen
e of queue operationsusing the monad laws, and so do not interfere with furtherappli
ation of these equations. If the �rst use is of remove ,then equations (4) and (5) enable us to remove it by movingit earlier until it en
ounters the mat
hing add | providedthere are at least as many adds as removes. Indeed, a se-quen
e of queue operations is only well-formed if every pre�x
ontains at least as many add operations as removes.But what do we mean by equality in these equations? We
ertainly do not mean that the two sides generate the samestate when they are run! In parti
ular, the left hand sideof equation (4)
reates and dis
ards an internal
ell in thequeue, while the right hand side does not:
learly pointervalues and memory
ontents will di�er after the two se-quen
es are exe
uted. Yet the di�eren
e is in low-level rep-resentations, and
annot be observed by the Haskell pro-grammer.We therefore fo
us on the observable behaviour of our
ode. Fortunately, operational semanti
ists have already de-�ned a program equivalen
e based on observations!De�nition A
ontext C is a \program with ahole". We write the result of \�lling the hole"with a term e as C [e℄.De�nition We write p + o when program p
omputes an observable result o.De�nition Two terms e and e 0 are operationallyequivalent if, for every
ontext C , then C [e℄ + oif and only if C [e 0℄ + o.In our
ase, two program fragments are equivalent if, whenthey are inserted into any Haskell program, the programoutput is the same. Yet quantifying over all Haskell pro-grams with holes is impra
ti
al, be
ause Haskell is so
om-plex. So instead, we shall restri
t our attention to \queue

programs", whi
h
ontain only queue operations on a singlequeue of integers, and moreover are well-formed in the sensedis
ussed above. We shall restri
t our observations to thevalues bound to variables in uses of front . Thus we
on-sider two queue-program fragments equivalent if, when theyare inserted into any queue program (in a well-formed way),then the results delivered by all the
alls of front are thesame.In restri
ting
ontexts and observations like this, we aremaking a number of reasonable assumptions. Sin
e Queueis an abstra
t datatype, other operations in the ST monadshould not interfere with queue operations | i.e. theyshould
ommute, sin
e the Queue representations are hid-den. We are also assuming that operations on di�erentqueues
ommute, sin
e there is no sharing between their rep-resentations. Given these assumptions, we
an ignore othermonadi
 operations and operations on other queues whenwe reason about the queue of interest. Sin
e the Queue op-erations are polymorphi
, we
an appeal to parametri
ityto argue that if the equations are satis�ed for Queues ofintegers, they are satis�ed at every type. It is also reason-able to restri
t our observations to the results from front ,again sin
e Queue is an abstra
t data type, and there is noother operator whi
h delivers any other type of value fromit. Thus, if two program fragments are operationally equiva-lent when we restri
t our attention to queue programs, thenthey should be equivalent in Haskell also.Now we just program operational equivalen
e using Qui
k-Che
k. We must de�ne queue programs: they
onsist ofqueue
reation followed by a sequen
e of A
tions.dataA
tion = Add Int j Remove jFront j Return (Maybe Int)deriving (Eq ; Show)We will not need to represent variable names in this exam-ple: we just assume that ea
h Front and Return binds avariable, and we shall observe the sequen
e of values bound.We de�ne the semanti
s of a
tion sequen
es via the fun
tionperform .perform ::Queue a Int ! [A
tion℄! ST a [Maybe Int ℄perform q [℄ = return [℄perform q (a : as) =
ase a ofAdd n !add n q >> perform q asRemove !remove q >> perform q asFront !liftM 2 (:) (front q) (perform q as)Return x !liftM (x :) (perform q as)We shall need to quantify over a
tions, or more spe
i�
allyover well-formed a
tion sequen
es. We must therefore de�nea test-data generator for these. We de�ne a
tions n as theset of a
tion sequen
es whi
h are well-formed after n addoperations, that is, for queues already
ontaining n elements.A Remove is only possible if the queue is non-empty.a
tions :: Num a) a ! Gen [A
tion℄a
tions n =

oneof ([return [℄;liftM 2 (:) (liftM Add arbitrary)(a
tions (n + 1));liftM (Front :) (a
tions n)℄ ++if n == 0 then[℄else[liftM (Remove :) (a
tions (n � 1))℄)We also de�ne a fun
tiondelta :: [A
tion℄ ! Intto
ompute the
hange in the number of queue elementswrought by a sequen
e of A
tions.Now for the de�nition of operational equivalen
e, whi
hfollows the formal de�nition exa
tly: we
hoose an arbitary
ontext
onsisting of a pre�x and suÆx of queue a
tions,taking
are that the
omplete program is well-formed, andthen
he
k that the observations we make are the same inea
h
ase.(�=) :: [A
tion℄ ! [A
tion℄ ! Property
 �=
0 =forAll (a
tions 0) $ � pref !forAll (a
tions (delta (pref ++
))) $ � su� !letobserve x =runST (doq emptyperform q (pref ++ x ++ su�))inobserve
 == observe
0Equations (3) and (5) in the spe
i�
ation
an now be writtendire
tly as Qui
kChe
k properties.prop FrontAdd m n =[Add m; Add n; Front ℄ �= [Add m; Front ; Add n℄prop AddRemove m n =[Add m; Add n; Remove℄ �= [Add m; Remove; Add n℄The other three equations relate fragments that begin by
reating an empty queue, and
an thus only appear at thestart of a queue program. We therefore need a slightly dif-ferent notion of operational equivalen
e.
 �=^
0 =forAll (a
tions (delta
)) $ � su� !letobserve x =runST (doq emptyperform q (x ++ su�))inobserve
 == observe
0The remaining equations are now easily stated.prop FrontEmpty =[Front ℄ �=^ [Return Nothing ℄prop FrontAddEmpty m =[Add m; Front ℄ �=^ [Add m; Return (Just m)℄prop AddRemoveEmpty m =[Add m; Remove℄ �=^ [℄The properties
an now be
he
ked by Qui
kChe
k. As ex-pe
ted, they all su

eed.

5. TESTING A MODEL-BASED SPECIFI-
CATION OF QUEUESIn the previous se
tion, we implemented an algebrai
 spe
-i�
ation of queues as Qui
kChe
k properties. But spe
i�
a-tions
ome in other
avours too. In this se
tion, we imple-ment a spe
i�
ation based on an abstra
t model of queues.The popular Z spe
i�
ation language, for example, is basedon su
h models [11℄.We shall model the state of a queue as a list of the storedelements. With this model, the queue operations are veryeasy to de�ne. We give them names subs
ripted by S , sin
ethey will serve as spe
i�
ations. Note that ea
h (ex
eptempty) returns both a \result" and a new queue.emptyS = [℄addS a q = ((); q ++ [a℄)removeS (: q) = ((); q)frontS [℄ = (Nothing ; [℄)frontS (a : q) = (Just a; a : q)Now, to formulate the
orre
tness of the implementation,we must relate the implementation state to the abstra
tmodel. A standard way to do so is to de�ne an abstra
-tion fun
tion, whi
h maps the implementation state to theabstra
t value that it represents. Our abstra
tion fun
tionmust, of
ourse, be monadi
.abstra
t :: Queue s a ! ST s [a℄We omit the (easy) de�nition; note only that abstra
t mustnot
hange the implementation state in any way.An implementation is
orre
t if it
ommutes with abstra
t :that is, if the answer delivered is the same answer that thespe
i�
ation delivers on the abstra
tion of the initial state,and the �nal state, when abstra
ted, is the same as the �nalstate produ
ed by the spe
i�
ation from the abstra
tion ofthe initial state.
ommutes :: Eq a)Queue s Int ! (Queue s Int ! ST s a)!([Int ℄ ! (a; [Int ℄)) ! ST s Bool
ommutes q a f = doold abstra
t qx a qnew abstra
t qreturn ((x ; new)== f old)Of
ourse, this
ondition must hold in all states. But whatdo we mean by \all states"? Certainly not all memory states:the referen
es that make up a queue representation must sat-isfy a strong invariant | they must be linked together in alinear
hain, without loops, the head node must point at the�rst and last element nodes, and so on. Trying to generate arandom heap state, with a rats' nest of referen
es, and thensele
t those that represent queues, would be both diÆ
ultand hopeless in pra
ti
e. Let us instead quantify over rea
h-able states, that is, states whi
h
an a
tually be produ
edby a sequen
e of queue operations. These automati
ally sat-isfy the queue invariant, they
an be represented naturallyby the sequen
e of operations whi
h
onstru
ts them, andthey are the only states of interest anyway! Fortunately, wehave already de�ned a generator for well-formed sequen
esof queue operations in the previous se
tion, so now it is easyto de�ne when an operation
orre
tly implements a spe
i�-
ation.

implements :: Eq a)(8 s:Queue s Int ! ST s a) !([Int ℄ ! (a; [Int ℄)) ! Propertya `implements` f =forAll (a
tions 0) $ � as !runST (doq emptyperform q as
ommutes q a f)The
orre
tness properties for add and front are now dire
t.prop Add n = add n `implements` addS nprop Front = front `implements` frontSThe empty operation does not quite �t this framework, sin
eit
reates a queue rather than modifying an existing one. We
annot reuse implements, but of
ourse it is
orre
t if therepresentation it
onstru
ts abstra
ts to the empty queue inthe spe
i�
ation.prop Empty =runST (doq emptyq 0 abstra
t qreturn (q 0== (emptyS :: [Int ℄)))Finally, the remove operation does not quite �t either, be-
ause it has a pre
ondition: it
an only be applied to non-empty queues. Thus we need a version of implements whi
hquanti�es over states satisfying a pre
ondition.implementsIf :: Eq a)(8 s:Queue s Int ! ST s Bool) !(8 s:Queue s Int ! ST s a) !([Int ℄ ! (a; [Int ℄)) !PropertyimplementsIf pre a f =forAll (a
tions 0) $ � as !runST (doq emptyperform q aspre q) =)runST (doq emptyperform q as
ommutes q a f)Now we
an
omplete our spe
i�
ation:prop Remove =implementsIf (liftM isJust Æ front) remove removeSOn
e again, all properties su

eed.
6. LESSONS FROM THE QUEUE EXAM-

PLEWe have shown how to represent two popular kinds ofspe
i�
ation as Qui
kChe
k properties, and thus use them di-re
tly for testing. The key idea for
oping with the monadi
nature of the implementation was to de�ne a \queue pro-gram language", represented as a Haskell datatype, andquantify over
ontexts. This enabled us to implement di-re
tly the de�nition of operational equivalen
e for testingthe algebrai
 spe
i�
ation, and to generate random rea
h-able states to test the model-based one.

The reader may wonder why we did not represent programfragments as monadi
 values | as semanti
s, rather thanabstra
t syntax. In prin
iple this may seem attra
tive, butthere are major advantages in using a datatype.� When tests fail, the values of quanti�ed variables aredisplayed. If we quantify over
ontexts, then we see theabstra
t syntax tree, whi
h is, of
ourse, very useful.The semanti
s of a
ontext is a fun
tion, however: ifwe quanti�ed over this instead then we would see nouseful information on a test failure.� As well as running program fragments, we may wishto
ompute some of their properties by stati
 analy-sis, whi
h requires an abstra
t syntax tree. A simpleexample of this is the delta fun
tion, used above topredi
t the
hanges in the number of elements in thequeue, when a queue program fragment is run.� When we test
ode using the ST monad, then
om-putations have polymorphi
 types, and fun
tions overthem must have rank-2 types. Examples are the im-plements and implementsIf fun
tions in the previousse
tion. These types
an be quite
omplex, and more-over must always be stated expli
itly. By passing ab-stra
t syntax trees instead, we avoid the need for mostrank-2 types.Indeed, there is an even more severe problem. If wewere to quantify over the semanti
s of
ontexts in the STmonad, by writing forAll
ontexts(�
 ! : : :), then sin
e
must have a polymorphi
 type, the �-expression must havea rank-2 type, and forAll must be used at an instan
e witha rank-3 type! This goes beyond what today's implemen-tations
an support: Hugs allows only rank-2 types, andalthough GHC now supports rank-k types (using Oderskyand L�aufer's work [20℄), the type system is still predi
ative,whi
h means that type variables
annot be instantiated toanything other than monotypes. To quantify over valuesinvolving the ST monad, we would need to de�ne a spe-
ial version of forAll , with an expli
itly stated rank-3 type.Moreover, we would need a di�erent version of forAll forea
h type of value quanti�ed over, so these versions
annotreasonably be pla
ed in the Qui
kChe
k library; they mustbe de�ned by the user of Qui
kChe
k, whi
h is una

eptable.Thus representing
ontexts by abstra
t syntax is essential tomaking our approa
h work at all.So far, we have used only Qui
kChe
k as des
ribed inour original paper [4℄, and it has worked pretty well; wehave needed no extensions spe
i�
 to monads. However,the shoe does pin
h a little. Look ba
k at the de�nition ofimplementsIf (for testing an operation with a pre
ondition):in order to
he
k that the state generated by the random
ontext satis�es the pre
ondition, we had to run the
odegenerating it twi
e! We
annot write, for example,pre q =)
ommutes q a finside a single
all of runST , be
ause =) is a property
om-binator, and has the wrong type to appear in an ST
om-putation. We
annot either writeb pre qif b then
ommutes q a felsereturn True

be
ause this has a di�erent meaning: it
ounts a test inwhi
h the pre
ondition is not satis�ed as a su

essful test,whi
h is not what we want at all!The problem is that we
annot use property operatorsin the midst of a monadi

omputation | and sometimes,that is exa
tly what we want to do. Other examples wouldbe quantifying over the elements of a list produ
ed by amonadi

omputation, or
olle
ting values generated in mo-nadi

ode. This motivates extending Qui
kChe
k with alanguage of monadi
 properties: the subje
t of the next se
-tion.
7. A LANGUAGE OF MONADIC SPECIFI-

CATIONSOur goal is to extend Qui
kChe
k with a new kind ofproperty, whi
h
an
ontain monadi

omputations in anunderlying monad m. We therefore de�ne a property monadPropertyM m a, whose elements may mix property oper-ations and m-
omputations. This is really just a monadtransformer [16℄, whose lifting operation we
allrun :: Monad m) m a ! PropertyM m aNon-monadi
 properties
an be embedded in monadi
 onesusing assert :: (Monad m; Testable a))a ! PropertyM m ()(where Testable types are those
orresponding to propertiesin vanilla Qui
kChe
k). An assertion must hold when themonadi
 property is tested.Pre
onditions
an be in
luded in monadi
 properties usingpre :: Monad m) Bool ! PropertyM m ()Test
ases in whi
h pre
onditions fail are dis
arded, just likewhen using the impli
ation
ombinator =).Using these operations, we
an represent a Hoare triplefpgx efqg aspre px run eassert qWe
an also think of run as a monadi
 weakest pre
onditionoperator: we
ould de�newp :: Monad m)m a ! (a ! PropertyM m b) ! PropertyM m bwp m k = run m >>= kand represent the weakest pre
ondition wp(x e; p) aswp e $ � x ! p.We represent quanti�
ation in monadi
 properties by ei-ther usingpi
k :: (Monad m; Show a))Gen a ! PropertyM m aor, for more familiar notation,forAllM gen k = pi
k gen >>= kThe
hoi
e between pi
k/forAllM and run/wp is a matterof taste: the latter operations resemble mathemati
al nota-tion more
losely, while the former let us take advantage ofHaskell's do synta
ti
 sugar.

We
an make observations of test data usingmonitor :: Monad m)(Property ! Property) ! PropertyM m ()For example, monitor (
olle
t e)
olle
ts the distribution ofvalues of e. Finally, we
an
onvert monadi
 properties ba
kto ordinary ones, given a \run fun
tion" for the underlyingmonad, usingmonadi
 :: Monad m)(m Property ! Property) !PropertyM m () ! Propertyimperative :: (8 b: PropertyM (ST b) ()) ! Propertyimperative is equivalent to monadi
 runST , ex
ept that thelatter would need impredi
ative rank-3 types and so
annotbe written.Using these operations, we
an revisit implementsIf andrewrite it as follows:implementsIf p a f = imperative (forAllM (a
tions 0) $ � as !doq run emptyrun (perform q as)ok run (p q)pre okb run (
ommutes q a f)assert b)The repeated exe
ution needed in the original version to testthe pre
ondition is gone.
8. SEMANTICS OF MONADIC

PROPERTIESQui
kChe
k properties enjoy both a
omputational and ade
larative reading, in whi
h generators really denote sets,=) is true impli
ation, and forAll is true quanti�
ation. Inthe de
larative reading, a property just denotes a truth value(not ne
essarily
omputable). Of
ourse, non-termination ina property may make a de
larative reading impossible, butwe restri
t ourselves here to terminating programs whosesemanti
s
an be modelled using sets and fun
tions, ratherthan domains and
ontinuous fun
tions. Even if there isa mismat
h here, the de
larative reading is the \intendedsemanti
s" whi
h our Haskell implementation approximates.But what is the de
larative reading of a monadi
 prop-erty? What is the logi
 whi
h we are trying to represent?Of
ourse, monadi
 properties may be based on any monad,not just the familiar state one. The meaning of propertieswhen the underlying monad permits ba
ktra
king throughpre
onditions, for example, or
on
urren
y, is far from ob-vious. In this se
tion, we give a formal semanti
s to themonadi
 property language whi
h answers su
h questions.We model monadi
 properties over a monad M as non-empty sets of
omputations of the type M Bool . We usesets to model quanti�
ation: a property forAllM s p is mod-elled by a set
onstru
ted from s. Given a satisfa
tion testfor the monad, testM :: M Bool ! Bool , a monadi
 prop-erty is satis�ed if every
omputation in the set delivers Truewhen it is tested. Di�erent
hoi
es for testM lead to di�er-ent interpretations of properties | for example, if M is thelist monad (representing ba
ktra
king
omputations), thentestM might require that all possible results are True, that

the �rst result is True, or that some result is True. If Mis the Maybe monad, then testM might interpret Nothing asTrue (testing for partial
orre
tness) or False (total
orre
t-ness). We require only that testM (return b) = b.Now, without loss of generality, we
an assume (be
auseof their type) that monadi
 properties end in return (). Su
ha property is trivially satis�ed. (Note that it is solely theassertions made during a monadi

omputation whi
h intro-du
e truth values to be
he
ked; the result of the
omputa-tion plays no role and is therefore irrelevant.)[[return()℄℄ = freturn TruegOtherwise, a property takes the form of m>>= k for some mand k . An assertion returns False if it is not satis�ed:[[assert True>>p℄℄ = [[p℄℄[[assert False>>p℄℄ = freturn FalsegA pre
ondition returns True if it is False.[[pre True>>p℄℄ = [[p℄℄[[pre False>>p℄℄ = freturn TruegQuanti�
ation derives a set of
omputations from ea
h ele-ment of the set quanti�ed over, and merges them | unlessthe set we quantify over is empty, when it su

eeds at on
e(to ensure that the meaning of the property is a non-emptyset).[[pi
k ;>>=k ℄℄ = freturn Trueg[[pi
k s>>=k ℄℄ = fm j x 2 s;m 2 [[k x ℄℄g; if s 6= ;Finally, running a
omputation of type M � is interpretedas [[run m>>=k ℄℄ = fm>>=k 0 j k 0 2 � ! M Bool ;8x :k 0 x 2 [[k x ℄℄gHere k represents a fun
tion from � to a set of
omputations,and k 0 is a fun
tion whi
h makes a
hoi
e from ea
h su
h set.It is to make this possible that we require the meaning of aproperty to be a non-empty set. The e�e
t of this de�nitionis that, if there is quanti�
ation in k (perhaps dependingon the result delivered by m), then every possible
hoi
e isrepresented by some m>>=k 0 in the resulting set.With these de�nitions, monadi
 properties have a well-de�ned meaning no matter what the underlying monad is.To understand these de�nitions a little bit better, it isuseful to instantiate them for a parti
ular monad. It is easyto see for example that taking the identity monad simplyreverts to basi
 Qui
kChe
k properties. Let us also look ata more elaborate example: As the underlying monad, wetake the list monad, and we look at the following somewhatarti�
ial property whi
h depends on an unknown predi
atep: dox run [1; 2℄y pi
k (elements [x + 3; x + 4℄)assert (p x y)(For
onvenien
e, we have left out the �nishing return ().)The operational reading is: We make two
omputations,one where x equals 1, and the other where x equals 2. Inboth
omputations, we pi
k an arbitrary element from thelist [x + 3; x + 4℄ as the value for y , and �nally we returnthe two-list of the results.

The de
larative reading of the two simple subexpressionsshould also be
lear:[[assert(p x y)℄℄ = f[p x y ℄g[[pi
k(elements[x + 3; x + 4℄)>>=�y ! assert(p x y)℄℄ =f[p x (x + 3)℄; [p x (x + 4)℄gThe de
larative reading of the whole property is:fk 0 1 ++ k 0 2 j 8x :k 0 x 2 f[p x (x + 3)℄; [p x (x + 4)℄gThis last expression simpli�es to:f[p 1 y1; p 2 y2℄ j y1 2 f1 + 3; 1 + 4g; y2 2 f2 + 3; 2 + 4ggWhi
h is the same as:f[p 1 4; p 2 5℄; [p 1 4; p 2 6℄; [p 1 5; p 2 5℄; [p 1 5; p 2 6℄gExa
tly what we expe
ted! It then depends on the
hosentest[℄ fun
tion (and on p of
ourse) whi
h of the elements inthe set a
tually pass the test or not, and thus whether allelements in the set pass the test.
9. IMPLEMENTING MONADIC PROPER-

TIESThe implementation of Qui
kChe
k is based on the monadGen , an abstra
t type de�ned bynewtypeGen a = Gen (Int ! StdGen ! a)Essentially a Gen a is a fun
tion from a random numberseed to an a: the Int parameter is used to
ontrol the size ofgenerated data and need not
on
ern us here. Qui
kChe
kproperties are just generators for test resultsnewtype Property = Prop (Gen Result)where the Result type
olle
ts quanti�ed variables, pre
on-ditions, and monitoring information as well as representingsu

ess or failure.Monadi
 properties are built by
ombining Gen and aCPS monad with the underlying monad m.newtype PropertyM m a =Monadi
 ((a ! Gen (m Result)) !Gen (m Result))Using CPS enables pre and assert to dis
ard the rest of aproperty when their argument is false.Given this type, the rest of the implementation is mostlystraightforward, and follows the semanti
s
losely; indeed,we added only about 30 lines of
ode to Qui
kChe
k, anddid not need to
hange any existing
ode at all. The onlytri
ky part is the de�nition of run:run m = Monadi
 (� k ! liftM (m >>=) (promote k))Here the
ontinuation k is of type a ! Gen (m Result), butbefore we apply liftM (m >>=) to it, we must
onvert it to aGen (a ! m Result). Be
ause of the way we de�ned Genthis is simple to do: the promote fun
tion need only swapthe arguments of the fun
tion it is passed, to take the ran-dom number seed and size �rst, rather than the a. Butthis kind of promotion is quite impossible for most mon-ads: indeed, for the monad Set (whi
h Gen is supposed torepresent), promote
orresponds to applying the Axiom ofChoi
e! No wonder this seemingly simple de�nition is some-what
ounter-intuitive.

data Element s a = Element a (STRef s (Link s a))data Link s a = Weight Int jNext (Element s a)newElement :: a ! ST s (Element s a)newElement a = dor newSTRef (Weight 1)return (Element a r)�ndElement :: Element s a ! ST s (Element s a)�ndElement (Element a r) =doe readSTRef r
ase e ofWeight w ! return (Element a r)Next next ! dolast �ndElement nextwriteSTRef r (Next last)return lastunionElements ::Element s a ! Element s a ! ST s ()unionElements e1 e2 =doElement a1 r1 �ndElement e1Element a2 r2 �ndElement e2Weight w1 readSTRef r1Weight w2 readSTRef r2if w1 � w2 thendowriteSTRef r1 (Next (Element a2 r2))writeSTRef r2 (Weight (w1 + w2))elsedowriteSTRef r2 (Next (Element a1 r1))writeSTRef r1 (Weight (w1 + w2))instan
e Eq (Element s a)whereElement r == Element r 0 = r == r 0Figure 1: The Union-Find Algorithm.
10. ANOTHER EXAMPLE: THE UNION/

FIND ALGORITHMAs an example whi
h makes extensive use of monadi
properties, we shall test the Union/Find algorithm. Thisis a very eÆ
ient way to represent an equivalen
e relation.Elements of the relation are organised into trees representingequivalen
e
lasses, with ea
h element
ontaining a pointerto its parent. By following these pointers to the root of ea
htree, we
an �nd a distinguished element of ea
h equiva-len
e
lass; the operation whi
h does so is
alled �nd . We
an test whether two elements are equivalent by
omparingthe results of �nd on ea
h one. Equivalen
e
lasses
an alsobe merged by de
laring two elements to be equivalent: thisis done by the fun
tion union, and a
hieved by making theroot of one tree point at the root of the other.The Union/Find algorithm owes its great eÆ
ien
y to twooptimisations:� After �nd has traversed a path to the root of a tree, itupdates all the elements in the path to point dire
tlyat the root. This speeds up subsequent �nds.� When trees are merged, the root of the lighter tree is

made to point at the root of the heavier, where theweight of a tree is the number of elements in it. Thisalso speeds up subsequent �nds.With these optimisations, a sequen
e of union and �nd op-erations is exe
uted in almost linear time (where \almost"involves the inverse of the A
kermann fun
tion, so for allpra
ti
al purposes we
an
onsider the time to be linear).A Haskell implementation of the Union/Find algorithm isvery simple; one appears in Figure 1. Elements are repre-sented by the type Element ,
ontain a value (so we
an rep-resent equivalen
e relations on other types), and are
reatedby the fun
tion newElement . The �nd and union operationsare implemented by �ndElement and unionElements. Fi-nally, Elements
an be
ompared, so we
an de
ide whethertwo results of �ndElement are the same. Elements
ontainan updateable Link , whi
h in the
ase of root nodes
ontainsa weight, and for other nodes
ontains the parent.
11. TESTING PRE- AND POSTCONDITIONS

FOR UNION/FINDWe shall test our Union/Find implementation using yeta third method: be spe
ifying pre- and post-
onditions forea
h operation. With this approa
h, we need neither anabstra
t model, nor algebrai
 laws. But we will still needto quantify over rea
hable states. As before, we de�ne alanguage of union/�nd programs.dataA
tion = New j Find Var jUnion Var Varderiving ShowtypeVar = IntA program is a list of A
tions, whi
h may
reate, �nd, orunite elements. The arguments of �ndElement and unionElementsmay be any element previously
reated by newElement ; weuse natural numbers to refer to them in order of
reation.The semanti
s of a
tion sequen
es is de�ned byexe
 :: [A
tion℄ ! [Element a ()℄ !ST a [Element a ()℄whi
h delivers as its result a list of the Elements
reated bynewElement .Of
ourse, only
ertain union/�nd programs are well-formed:we must not use an Element whi
h has not been
reated.We therefore de�ne a generator for the set of programs well-formed in the
ontext of k elements.a
tions :: Int ! Gen [A
tion℄a
tions 0 =frequen
y [(25; liftM (New :) (a
tions 1));(1; return [℄)℄a
tions n =frequen
y[(2; liftM (New :) (a
tions (n + 1)));(2; liftM 2 (:) (liftM Find element)(a
tions n));(2; liftM 2 (:) (liftM 2Union elementelement)(a
tions n));(1; return [℄)℄whereelement =
hoose (0; n � 1)When the number of elements is zero, the only possible a
-tion is New : we give this a high probability, to avoid a large

number of tests in the initial state. Similarly, we assigna higher probability to
hoosing an operation than to re-turning the empty list: we
an expe
t to generate a
tionsequen
es with an average length of 7 using this de�nition.Now we
an de�ne a
ombinator for quantifying over allstates.forAllStates ::(8 s: [Element s ()℄ ! PropertyM (ST s) a) !PropertyforAllStates p =forAll (a
tions 0) $ � as !imperative (dovars run (exe
 as [℄)p vars)We pass the property p a list of all
reated Elements; inmost properties we need to quantify over the elements ofthis list.This quanti�
ation poses a problem, though. Qui
kChe
k'squanti�
ation operators
an only quantify over types in
lassShow , sin
e the value
hosen must be displayed when a testfails. But Elements
annot be shown, sin
e they
ontainSTRef s, and this is an abstra
t type for whi
h show is notde�ned. Of
ourse, we
ould de�ne our own Show instan
eto display referen
es as "< STRef >", but this would not beuseful! We want to know whi
h element was
hosen when atest fails!Our solution to the \abstra
t type quanti�
ation" prob-lem is to quantify over an element's position in a list instead:as long as we know how the list is
onstru
ted, we
an in-fer whi
h element was used. In this
ase, we use the list of
reated Elements passed to properties by forAllStates . Wede�ne a fun
tionpi
kElement :: Monad m) [a℄ ! PropertyM m api
kElement vars =dopre (not (null vars))i pi
k (
hoose (0; length vars � 1))return (vars !! i)whi
h quanti�es over this list, and imposes a pre
onditionthat it be non-empty.Now we just need to
hara
terise the behaviour of �ndElementand unionElements using pre- and post
onditions. We willneed to refer to the distinguished representative of ea
hequivalen
e
lass, so we de�nerepresentative :: Element a b ! ST a (Element a b)to �nd it. Of
ourse, this fun
tion delivers the same resultas �ndElement , but without a side e�e
t. It is just for usein formulating properties.Let us begin! Firstly, �ndElements returns the represen-tative of its argument.prop FindReturnsRep =forAllStates (� vars !dov pi
kElement varsr run (representative v)r 0 run (�ndElement v)assert (r== r 0))Se
ondly, �ndElement does not
hange the representative ofany element.

prop FindPreservesReps =forAllStates (� vars !do(v ; v 0) two (pi
kElement vars)r0 run (representative v)r 0 run (�ndElement v 0)r1 run (representative v)assert (r0== r1))Thirdly, unionElements does not
hange the representativesof elements whi
h were not previously equivalent to one ofits arguments.prop UnionPreservesOtherReps =forAllStates (� vars !do(v0; v1; v2) three (pi
kElement vars)[r0; r1; r2℄ run (mapM representative [v0; v1; v2℄)pre (r0 6= r1 ^ r0 6= r2)run (unionElements v1 v2)r00 run (representative v0)assert (r0 == r00))Finally, unionElements really does unite equivalen
e
lasses.We express this by stating that all the elements of the equiv-alen
e
lass of either argument have the same representativeafterwards.prop UnionUnites =forAllStates (� vars !do(v1; v2) two (pi
kElement vars)
1 run (equivClass vars v1)
2 run (equivClass vars v2)run (unionElements v1 v2)
10 run (mapM representative
1)
20 run (mapM representative
2)assert (length (nub (
10 ++
20)) == 1))whereequivClass vars v = �lterM (� v) varse1 � e2 = liftM 2 (==) (representative e1)(representative e2)We
laim that these properties are easy to read and write.Moreover, note that we have taken great advantage of themonadi
 property language: pre
onditions, quanti�
ations,and
omputations are thoroughly mixed in these properties.Let us test one more property: the \weight invariant"stating that ea
h root node
ontains a weight equal to thenumber of elements whi
h it represents.prop WeightInvariant =forAllStates (� vars !dov pi
kElement varsr�(Element link) run (representative v)Weight w run (readSTRef link)rs run (mapM representative vars)assert (w== length (�lter (== r) rs)))This property is not ne
essary for
orre
tness, but it is foreÆ
ien
y. Surprisingly, when we qui
kChe
k it, it fails! Af-ter a few tries to �nd a small
ounter-example, we �ndUnionFind > qui
kChe
k prop WeightInvariantFalsi�able; after 3 tests :

[NewElement ;UnionElements 0 0℄0This tells us that the weight of element 0 is wrong after it isunioned with itself. Inspe
ting the
ode of unionElements ,we qui
kly see why: we forgot to
onsider the
ase when thetwo arguments are already equivalent. In that
ase, we needdo nothing | and in parti
ular, the weight should not beupdated. Adding this spe
ial
ase makes all properties gothrough.
12. TESTING A MODEL-BASED SPECIFI-

CATION OF UNION/FINDJust as we tested queues using a spe
i�
ation based onan abstra
t model, we
an test the Union/Find algorithmin the same way. We shall model elements by natural num-bers in the range 0 : : : k , and the state by a fun
tion reprfrom f0 : : : kg to itself, whi
h maps elements to their repre-sentative. We
an
onveniently represent su
h a fun
tion inHaskell by a list (so we apply it to an element x by writingrepr !! x). We de�ne an abstra
tion fun
tion to re
over theabstra
t state.abstra
t :: [Element a b℄ ! ST a [Int ℄abstra
t vars = mapM abs varswhereabs v = dor representative vreturn (position vars r)where position returns the position of an element in a list.The abstra
t state must satisfy an invariant: repr Æ reprmust equal repr . We writeprop Invariant = forAllStates (� vars !dorepr run (abstra
t vars)assert (repr == map (repr !!) repr))Now, noti
e that (as far as
orre
tness is
on
erned) itdoes not matter whether union makes its �rst argumentpoint to its se
ond, or vi
e versa. Rather than spe
ifythis behaviour exa
tly, we shall use relational spe
i�
ationswhi
h leave some freedom to the implementor. Thus wespe
ify our operations via a predi
ate whi
h must hold onthe inputs, initial state, output, and �nal state, rather thanby giving a fun
tion from the former to the latter. Thespe
i�
ations of �nd and union are easy to write:�ndS x repr y repr 0 =repr== repr 0 ^ y == repr !! xunionS x y repr () repr 0 =letz = repr 0 !! xin(z == repr !! x _ z == repr !! y) ^repr 0 == [if z 0== repr !! x _ z 0== repr !! y thenzelsez 0 j z 0 repr ℄These spe
i�
ations
losely resemble Z s
hemas [11℄.We de�ne a
ombinator expressing that a monadi

om-putation implements su
h a spe
i�
ation:

implements vars m s =dorepr run (abstra
t vars)ans run mrepr 0 run (abstra
t vars)assert (s repr ans repr 0)Now it only remains to state that �ndElement and union-Elements implement the spe
i�
ations above, for all
hoi
esof elements. The only (slight)
ompli
ation is that we must
onvert elements from their
on
rete to their abstra
t rep-resentation (using position vars) before we
an
ompare im-plementation and spe
i�
ation.prop Find = forAllStates (� vars !dov pi
kElement varsimplements vars(liftM (position vars) (�ndElement v))(�ndS (position vars v)))prop Union = forAllStates (� vars !do(v ; v 0) two (pi
kElement vars)implements vars(unionElements v v 0)(unionS (position vars v) (position vars v 0)))This
ompletes the model-based spe
i�
ation: it is pleas-ingly simple. Indeed, model-based spe
i�
ations are oftensimpler than pre- and post
ondition spe
i�
ations su
h aswe gave in the previous se
tion, sin
e the latter are
ou
hedin terms of the (generally more
omplex) implementationstate. So why not always use model-based spe
i�
ations?Firstly, it is useful to be able to test pre- and post
onditions,sin
e in some
ases one may just wish to test a few su
h prop-erties without going to the trouble of de�ning a
omplete ab-stra
t model. Se
ondly, be
ause the pre- and post-
onditionstyle is expressed entirely in terms of the implementationstate, these properties
an often be tested more eÆ
ientlythan those in the model-based style (although speed is nota problem in these examples).
13. A GENERAL MODEL-BASED SPECI-

FICATION FRAMEWORKFully formal spe
i�
ations
an be
ome quite
omplex (thisis true whether they are used for testing or any other pur-pose). An advantage of representing them in a languagelike Haskell, with powerful abstra
tion me
hanisms, is thatwe
an hope to �nd \higher-level
ombinators" whi
h makespe
i�
ations easier to write. In this se
tion we sket
h aninitial step in this dire
tion: a library for model-based spe
-i�
ation of imperative ADTs, whi
h we apply to the queueexample on
e more.The library is based on two abstra
t types, the �rst ofwhi
h isdataA
tion m spe
 impl = : : :An element of this type represents a
on
rete operation inthe monad m, that works on an implementation type impl,and has an abstra
t fun
tional
ounterpart of type spe
. Forexample, in the
ase of queues, m is the monad ST s , spe
is the type [Int ℄, and impl is the type Queue s Int ; an a
-tion might represent the operation add 23. However, an a
-tion
ontains both the spe
i�
ation and implementation of

an operation, and when exe
uted, tests if the observationaloutputs of the a
tion are the same. In the queue exam-ple, we
he
k that all
alls to the implementation of frontprodu
e the same answer as the spe
i�
ation | this is our
orre
tness
riterion.The fun
tionsameOutput :: [A
tion m spe
 impl ℄ ! m Boolexe
utes a list of a
tions in sequen
e, thus
he
king that theobservable outputs of all a
tions are the same.The se
ond abstra
t type isdataMethod m spe
 impl = : : :A Method represents an A
tion generator | for example,
orresponding to add , from whi
h the A
tion add 23
an begenerated. Methods are
onstru
ted using method
ombina-tors, as in this example, whi
h spe
i�es the queue methods:methods Queue :: [Method (ST s) [Int ℄ (Queue s Int)℄methods Queue =[name "empty" $methodInit [℄ empty ;name "add" $ arg arbitrary $ �x !method1 addS add ;name "front" $method1 frontS front ;name "remove" $method1Pre (not : null) removeS remove℄Here, name spe
i�es the name of an operator (for debug-ging output). The method
onstru
tor methodInit spe
i�esa method that
reates an obje
t, method1 spe
i�es a methodthat transforms one obje
t, method1Pre spe
i�es a methodthat has a pre
ondition, and there are other method
on-stru
tors. The method
ombinator arg is used to spe
ify anargument to a method.Given su
h a list of methods, we
an generate random se-quen
es of a
tions whi
h
orrespond to
alls of the methods.This is done by the generator a
tions :a
tions :: [Method m spe
 impl ℄ !Gen [A
tion m spe
 impl ℄This fun
tion keeps tra
k of the abstra
t state when gener-ating the list of a
tions, and at any point in time only pi
ksmethods whose pre
ondition is satis�ed. The
urrent versionof a
tions makes a property fail if it gets to a state wherethere are no methods whi
h
an be performed | when itis "stu
k". Of
ourse, it depends on the appli
ation if thisreally is an error or not.Note that the list of the list of methods denotes a
hoi
eof methods, whereas the list in the list of a
tions denotes asequen
e of a
tions.Finally, we
he
k that all generated a
tion sequen
es pro-du
e the same output in the abstra
t and
on
rete seman-ti
s. This is done by the fun
tion
ommutes :
ommutes :: [Method m spe
 impl ℄ ! PropertyM m ()
ommutes methods =forAllM (a
tions methods) $ �a
ts !dob sameOutput a
tsassert bNoti
e that, in monadi
 properties, we
an quantify over thesemanti
s of a
tions | the \rank-3" problem dis
ussed inse
tion 6 is avoided.

Using the library, a full
orre
tness spe
i�
ation of thequeue example looks like this:prop Queue = imperative (
ommutes methods Queue)Together with the de�nition of methods Queue , this is onlya few lines.
14. RELATED WORKThere are two other automated testing tools for Haskell.HUnit is a unit testing framework based on the JUnit frame-work for Java, whi
h permits test
ases to be stru
tured hi-erar
hi
ally into tests whi
h
an be run automati
ally [12℄.HUnit allows the programmer to de�ne \assertions", butthese apply only to a parti
ular test
ase, and so do notmake up a spe
i�
ation. There is no automati
 generationof test
ases.Auburn [18℄ is a tool primarily intended for ben
hmarkingabstra
t data types. Auburn generates random \datatypeusage graphs" (dugs),
orresponding to our \queue pro-grams" et
, and measures the time to evaluate them. Auburn
an produ
e dug generators and evaluators automati
ally,given the signature of the ADT. It avoids generating ill-formed dugs by tra
king an abstra
t state, or \shadow",for ea
h value of the ADT, and
he
king pre
onditions ex-pressed in terms of it before applying an operator. Duggenerators are parameterised on the desired frequen
y ofthe di�erent operations, size of data to generate, degree ofsharing et
, so that ben
hmarking
orresponds as
losely aspossible to real
onditions. Ben
hmarking
an reveal errorsin the ADT implementation, but sin
e there is no spe
i�-
ation or other test ora
le then they are dis
overed only ifthey lead to run-time failure.The Hat tra
er for Haskell [25℄ is not a testing tool, butenables the programmer to browse a
omputation on
e ithas failed. We are investigating integrating it with Qui
k-Che
k, so that the tra
er
an be invoked when Qui
kChe
kdis
overs a fault.The more general testing literature is voluminous.Random testing dates from the 1960s, and is now used
ommer
ially, espe
ially when the distribution of randomdata
an be
hosen to mat
h that of the real data. It
om-pares surprisingly favourably in pra
ti
e with systemati

hoi
e of test
ases. In 1984, Duran and Ntafos
omparedthe fault dete
tion probability of random testing with parti-tion testing, and dis
overed that the di�eren
es in e�e
tive-ness were small [6℄. Hamlet and Taylor
orroborated theoriginal results [10℄. Although partition testing is slightlymore e�e
tive at exposing faults, to quote Hamlet's ex
el-lent survey [9℄, \By taking 20% more points in a randomtest, any advantage a partition test might have had is wipedout." Our philosophy is to apply random testing at a �negrain, by spe
ifying properties of most fun
tions under test.So even when Qui
kChe
k is used to test a large program, wealways test a small part at a time, and are therefore likelyto exer
ise ea
h part of the
ode thoroughly.Invoking sequen
es of operations to test abstra
t datatypes is a standard approa
h (how else
ould it be done?).Generating random sequen
es of operations, while still ful-�lling all pre
onditions, is not so
ommon. Our test datageneration language, embedded in Haskell, makes this easy.The
onne
tion we have drawn between random sequen
esof operations and the de�nition of observational equivalen
eis new.

Algebrai
 spe
i�
ations have been used by many authorsas a foundation for testing. The �rst system based on thisidea was DAISTS [8℄, whi
h tested abstra
t data types byevaluating and
omparing the left and right hand sides ofequations in the spe
i�
ation, in test
ases supplied by theuser. Although the language used was imperative, abstra
tdata type operations were forbidden to side-e�e
t their ar-guments, so the programs to be tested were essentially re-stri
ted to be fun
tional.Later work aims to relax this restri
tion: Antoy and Ham-let des
ribe a te
hnique for testing C++
lasses against analgebrai
 spe
i�
ation, whi
h is animated in order to pre-di
t the
orre
t result [1℄. The spe
i�
ation language mustbe somewhat restri
ted in order to guarantee that spe
i�
a-tions
an be animated. The
on
rete and abstra
t states arerelated by a programmer-de�ned abstra
tion fun
tion, justas in this paper. Antoy and Hamlet do not address test
asegeneration, leaving that as a problem for a separate tool.Bernot, Gaudel, and Marre developed a theory of test-ing, whi
h formalises the assumptions on whi
h sele
tion oftest
ases is based [2℄. They developed a tool for test
asesele
tion based on an algebrai
 spe
i�
ation.One unusual feature of the algebrai
 spe
i�
ations in thispaper is that they relate monadi
 terms, in whi
h the under-lying state is impli
it. More
ommonly in algebrai
 spe
i�
a-tions, the state is an expli
it argument and result. (Perhapsthis is be
ause algebrai
 spe
i�
ation frameworks tend tobe �rst order.) Relating programs rather than states lets uswrite equations whi
h apply dire
tly to the imperative im-plementation. We believe we are the �rst to dire
tly verifysu
h equations by testing: re
all that DAISTS was limitedto testing pure fun
tions, and Antoy and Hamlet used theirequational spe
i�
ation to derive rewrite rules, rather thantesting the equations in it dire
tly.Model-based spe
i�
ations have also been used as a foun-dation for testing. Sto
ks and Carrington developed a frame-work for deriving test frames (
hara
terising a
lass of test
ases) from a Z spe
i�
ation [24℄. They derived test framesmanually, but Donat has developed an automati
 tool for do-ing so [5℄. Model-based spe
i�
ations have also been used astest ora
les. A tool for instrumenting C++
lasses to
he
kpre- and post-
onditions derived from a model-based spe
-i�
ation has been developed by Edwards [7℄. Mueller andKorel test C
ode against a formal spe
i�
ation by trans-lating the spe
i�
ation into
ode whi
h
he
ks the results ofthe test, and generating test
ases either randomly or usingexisting test
ase generators [19℄. The
ase studies used arerather small though | the most
omplex is the C string
opy fun
tion.All of this work requires some prepro
essing or analysisof spe
i�
ations before they
an be used for testing. Qui
k-Che
k is unique in using spe
i�
ations dire
tly, both for test
ase generation and as a test ora
le. The other side of the
oin is that the Qui
kChe
k spe
i�
ation language is ne
es-sarily more restri
tive than, for example, predi
ate
al
ulus,sin
e properties must be dire
tly testable.Pitts' evaluation logi
 bears some resemblan
e to our monadi
property language [23℄. It is also parameterised on a monad,and permits properties to be stated whi
h hold after a
om-putation. Pitts writes [x (e℄P where we write run e>>=� x ! P .However, the two languages di�er in essential ways. For ex-ample, Pitts
an write [x (e℄P ^ [x 0 (e 0℄P 0, meaningthat if we
ompute e, then P will hold, but if we
ompute

e 0, then P 0 will hold. We
annot express this | indeed, wehave no
onjun
tion operator, but the reason is deep seated.To test this property, we would have to
ompute both e ande 0 in some order! But Pitts' property talks about the stateafter
omputing one or the other, but not both.Qui
kChe
k's main limitation as a testing tool is that itprovides no information on the stru
tural
overage of theprogram under test: there is no
he
k, for example, thatevery part of the
ode is exer
ised. We leave this as theresponsibility of an external
overage tool. Unfortunately,no su
h tool exists for Haskell! It is possible that Hat
ouldbe extended to play this rôle.
15. CONCLUSIONSIn this paper, we have shown how Qui
kChe
k
an be usedfor spe
i�
ation-based testing of imperative operations. Themain
ontributions are:� We have made a link between testing of imperative
ode and the
on
ept of observational equivalen
e.� We have shown how equations between imperative
odefragments
an be tested dire
tly, by running ea
h frag-ment in the same
ontext. Representing
ontexts ex-pli
itly by data stru
tures was a key step here.� We have de�ned and given the semanti
s of a new kindof monadi
 properties, parameterised over any monad.� We have shown that theQui
kChe
k property language,despite its limitations, is suÆ
iently powerful to rep-resent many
ommon spe
i�
ation formalisms (alge-brai
 spe
i�
ations, fun
tional models, relational mod-els, pre- and post-
onditions).� We have shown that ea
h formalism so represented
anbe used dire
tly for testing imperative
ode.It will be ex
iting to formulate further formal systemsusing Qui
kChe
k.
16. REFERENCES[1℄ S. Antoy and R. Hamlet. Automati
ally
he
king animplementation against its formal spe
i�
ation. InIrvine Software Symposium, pages 29{48, Mar
h 1992.[2℄ Gilles Bernot, Marie Claude Gaudel, and BrunoMarre. Software Testing based on FormalSpe
i�
ations: a theory and a tool. SoftwareEngineering Journal, 6(6):387{405, Nov 1991.[3℄ F. Warren Burton. An eÆ
ient fun
tionalimplementation of FIFO queues. InformationPro
essing Letters, 14(5):205{206, July 1982.[4℄ Koen Claessen and John Hughes. Qui
k
he
k: alightweight tool for random testing of haskellprograms. In International Conferen
e on Fun
tionalProgramming, pages 268{279. ACM, 2000.[5℄ M. Donat. Automating Formal Spe
i�
ation BasedTesting. In M. Bidoit and M. Dau
het, editors, Pro
.Conf. on Theory and Pra
ti
e of Sw Development(TAPSOFT 97), volume 1214, pages 833{847, Lille,Fran
e, 1997. Springer-Verlag, Berlin.[6℄ J. Duran and S. Ntafos. An evaluation of randomtesting. Transa
tions on Software Engineering,10(4):438{444, July 1984.

[7℄ Stephen H. Edwards. A framework for pra
ti
al,automated bla
k-box testing of
omponent-basesoftware. Software Testing, Veri�
ation andReliability, 11(2), June 2001.[8℄ J. Gannon, R. Hamlet, and P. M
Mullin. Dataabstra
tion implementation, spe
i�
ation, and testing.Trans. Prog. Lang. and Systems, (3):211{223, 1981.[9℄ D. Hamlet. Random testing. In J. Mar
iniak, editor,En
y
lopedia of Software Engineering, pages 970{978.Wiley, 1994.[10℄ R. Hamlet and R. Taylor. Partition testing does notinspire
on�den
e. Transa
tions on SoftwareEngineering, 16(12):1402{1411, De
ember 1990.[11℄ I. J. Hayes, editor. Spe
i�
ation Case Studies. Prenti
eHall International Series in Computer S
ien
e, 2ndedition, 1993.[12℄ Dean Herington. HUnit 1.0 User's Guide, 2002.http://hunit.sour
eforge.net/HUnit-1.0/Guide.html.[13℄ P. Hudak. Modular Domain Spe
i�
 Languages andTools. In Pro
eedings of Fifth InternationalConferen
e on Software Reuse. IEEE ComputerSo
iety, Jun 1999.[14℄ Simon Peyton Jones. Ta
kling the awkward squad:monadi
 input/output,
on
urren
y, ex
eptions, andforeign-language
alls in Haskell. In Tony Hoare,Manfred Broy, and Ralf Steinbruggen, editors,Engineering theories of software
onstru
tion, pages47{96. IOS Press, 2001. Presented at the 2000Marktoberdorf Summer S
hool.[15℄ J. Laun
hbury and S. Peyton Jones. State in Haskell.Lisp and Symboli
 Computation, 8(4):293{341,De
ember 1995.[16℄ S. Liang, P. Hudak, and M. Jones. Monadtransformers and modular interpreters. In Conferen
eRe
ord of POPL'95: 22nd ACM SIGPLAN-SIGACTSymposium on Prin
iples of Programming Languages,pages 333{343, San Fran
is
o, California, 1995.[17℄ Tom Moertel. Seven Lessons from the ICFPProgramming Contest.http://www.kuro5hin.org/story/2001/7/31/0102/11014,2001.[18℄ Graeme E. Moss and Colin Run
iman. Automatedben
hmarking of fun
tional data stru
tures. InPra
ti
al Aspe
ts of De
larative Languages, pages1{15, 1999.[19℄ C. Mueller and B. Korel. Automated evaluation of
ots
omponents. In First International Workshop onAutomated Program Analysis, Testing andVeri�
ation, Limeri
k, Ireland, 2000. In
onjun
tionwith ICSE 2000.[20℄ Martin Odersky and Konstantin L�aufer. Putting typeannotations to work. In Conferen
e Re
ord of POPL'96: The 23rd ACM SIGPLAN-SIGACT Symposiumon Prin
iples of Programming Languages, St.Petersberg Bea
h, Florida, pages 54{67, New York,NY, 1996.[21℄ Chris Okasaki. An Overview of Edison. In HaskellWorkshop, pages 34{54, September 2000.[22℄ S. L. Peyton Jones and P. Wadler. ImperativeFun
tional programming. In Pro
eedings 1993Symposium Prin
iples of Programming Languages,Charleston, N.Carolina, 1993.

[23℄ Andrew M. Pitts. Evaluation logi
. In G. Birtwistle,editor, Pro
eedings of the IVth Higher OrderWorkshop, pages 162{189. Springer-Verlag, 1990.[24℄ Phil Sto
ks and David Carrington. A Framework forSpe
i�
ation Based Testing. Transa
tions on SoftwareEngineering, 22(11), Nov 1996.[25℄ Mal
olm Walla
e, Olaf Chitil, Thorsten Brehm, andColin Run
iman. Multiple-View Tra
ing for Haskell: aNew Hat. In Haskell Workshop. ACM, September2001.

View publication stats

https://www.researchgate.net/publication/2831386

